AMP-DCC Data Analysis Report CAMP Phase 2

04/17/2019 (12:41)

Prepared by: Ryan Koesterer and Maria Costanzo on behalf of Broad Institute

Contact: AMP-DCC Analysis Team (amp-dcc-dat@broadinstitute.org)

This document was generated using Loamstream [16] and the AMP-DCC Data Analysis Pipeline [17]

Contents

1	Intro	oduction	2													
2	Data	Data														
3	Stra	itegy	4													
	3.1	Sample structure and pipeline	4													
		3.1.1 Cohort-level analysis	4													
		3.1.2 Meta-analysis	4													
	3.2	Ancestry Adjustment and Outlier Removal	5													
4	Dias	stolic Blood Pressure (DBP10)	6													
	4.1	Summary	6													
	4.2	Calibration	7													
	4.3	Top associations	8													
	4.4	Previously identified risk loci	8													
5	Bod	y Mass Index (BMI)	10													
	5.1	Summary	10													
	5.2	Calibration	11													

	5.3	Top associations	12
	5.4	Previously identified risk loci	12
6	Syst	colic Blood Pressure (SBP15)	14
	6.1	Summary	14
	6.2	Calibration	15
	6.3	Top associations	16
	6.4	Previously identified risk loci	16
7	HDI	L Cholesterol (HDL)	18
	7.1	Summary	18
	7.2	Calibration	19
	7.3	Top associations	20
	7.4	Previously identified risk loci	20
8	LDL	. Cholesterol (LDL_DIRECT)	22
	8.1	Summary	22
	8.2	Calibration	23
	8.3	Top associations	24
	8.4	Previously identified risk loci	24
9	Ack	nowledgements	26
10	Refe	erences	27

1 Introduction

2 Data

In order to run the data we received through our analysis pipeline in an efficient manner, the genotype arrays were each given a short code name; EX. In Table 1, we list the corresponding filename of the data set we received, the format of the file set (*note: 'bfile' refers to binary Plink format* [1]), and a liftOver [2] chain file if it was required to remap the variants to GRCh37 / hg19 coordinates

See Figure 1 for intersection counts of samples available for analysis. After applying variant filters, there were 404,854 variants remaining for analysis.

Table 1: Genotype array information

ID	Filename			Format	LiftOver	
EX	boxfixSEX	Fill_binary_11.	loamstream	bfile	N/A	
	Intersection Size 1000- 1000-	377-76	₹98	Ŝб	÷	75
	EX (AMR)	•	•	•	•	•
	EX (EAS)			•		
	EX (SAS)				•	
I	EX (AFR)		٠			
	EX (EUR)	٠				
2000 1000 Samples	Ó					

Figure 1: Samples remaining for analysis after quality control

3 Strategy

3.1 Sample structure and pipeline

The strategy we used to perform association testing can be found below. The 'ID' columns are the names used to identify each set of association test results in this document. The 'Report' columns indicate whether or not that particular set of association results will be presented in the tables and plots of the proceeding sections.

3.1.1 Cohort-level analysis

In Table 2, all of the cohorts available for analysis are defined. Each cohort was defined by a single array and one or more ancestral populations.

Table 2: Cohort-level analysis

ID	Array	Ancestry	Report
EUR	EX	EUR	NO
AFR	EX	AFR	NO

3.1.2 Meta-analysis

Table 3 defines any meta-analyses performed on the cohorts. Each cohort that was included is detailed along with the number of samples removed prior to cohort-level association testing. In order to identify samples that needed to be removed due to relatedness across cohorts, the cohorts genotypes were first merged on common variants. Then, autosomal variants with MAF >= 0.01 and callrate >= 0.98 were extracted and kinship values were calculated using King [4] with the '--kinship' flag. The reference cohort, the first one listed, maintained all of its samples. Starting from the last listed cohort, any samples shown to have some relation (kinship >= 0.0884) to a sample from any preceeding cohort was removed. This was continued until all cohorts subsequent to the reference cohort had been processed.

Table 3: Meta-analysis

ID	Cohort	KinshipRemove	Report
META			YES
	EUR	0	
	AFR	0	

3.2 Ancestry Adjustment and Outlier Removal

Adjusting the statistical models for underlying ancestry is often crucial to reduce or eliminate Type 1 error. Often analysts include principal components of ancestry as covariates in their models as a matter of convention. In our case, we undertook a more nuanced approach. First, the top 10 PC's were calculated for each cohort using the PC-AiR method [3]. Then, the phenotype of interest was regressed on the covariates to be used in the model and all of the PC's. If the *N*th PC exhibited a statistically significant *p*-value ($p \le 0.05$), we selected PC's 1 - N to be included in association testing. Once determined, any sample lying outside 6 standard deviations from the mean on any of the *N* PC's was marked as an outlier and removed from the sample set. This process was repeated up to a maximum of ten times until no outliers were found, resulting in more homogeneous sample sets for each particular analysis. For this project, a hard minimum of 0 PC's to be included in analysis was set by the analyst.

4 Diastolic Blood Pressure (DBP10)

4.1 Summary

Figure 2: Distribution of DBP10 in META by cohort

Table 4: Samples with Diastolic Blood Pressure data summarized by cohort, transformation, and run-time adjustments

Cohort	Array	Ancestry	Trans	Covars	PCs	Ν	Male	Female	Max	Min	μ	$ ilde{x}$	σ
META AFR	EX	AFR	invn	AGE_BP+AGE_BP2+SEX+BMI	0	374	187	187	121.0	50.0	75.559	76.0	9.952
META EUR	EX	EUR	invn	$AGE_BP{+}AGE_BP2{+}SEX{+}BMI$	10	3041	1857	1184	110.0	40.0	72.162	70.0	9.095

4.2 Calibration

(a) invn Adjusted AGE_BP+AGE_BP2+SEX+BMI

Figure 3: QQ plots for DBP10 in the META analysis

Figure 4: Manhattan plots for DBP10 in the META analysis

4.3 Top associations

Table 5: To	op variants in	the META	invn Adjuste	d AGE	_BP+AGE_	_BP2+SEX+BMI	model	(bold	variants
indicate pre	viously identif	ied associatio	ons)						

CHR	POS	ID	EA	OA	GENECLOSEST	DIR	Ν	MALE	FEMALE	FREQAVG	FREQMIN	FREQMAX	EFFECT	STDERR	OR	ZSCORE	Р
14	75279461	rs2302835	G	А	YLPM1	++	3,414	2,043	1,371	$1.58\cdot 10^{-2}$	$2.14\cdot 10^{-3}$	0.127	0.497	0.103	1.644	-4.836	$1.32 \cdot 10^{-6}$
14	54295649	rs1958636	G	А	BMP4	$^{++}$	$3,\!415$	2,044	1,371	0.848	0.584	0.881	0.163	$3.54\cdot 10^{-2}$	1.177	-4.593	$4.36\cdot 10^{-6}$
11	46893108	rs2306029	т	С	LRP4	$^{++}$	$3,\!415$	2,044	1,371	0.502	0.207	0.538	0.112	$2.46\cdot 10^{-2}$	1.119	-4.56	$5.12\cdot 10^{-6}$
10	1854773	rs12570407	т	С	ADARB2	$^{++}$	3,414	2,044	1,370	$1.54\cdot 10^{-2}$	$1.51\cdot 10^{-2}$	$1.74\cdot 10^{-2}$	0.446	$9.91\cdot 10^{-2}$	1.562	4.501	$6.77\cdot 10^{-6}$
6	43976268	rs9381273	А	G	C6orf223	$^{++}$	$3,\!415$	2,044	1,371	0.237	0.176	0.729	0.138	$3.07\cdot 10^{-2}$	1.148	4.488	$7.19\cdot 10^{-6}$
2	52324258	rs10181636	G	Т	NRXN1	$^{++}$	$3,\!413$	2,043	$1,\!370$	0.568	0.564	0.596	0.108	$2.43\cdot 10^{-2}$	1.114	4.454	$8.42\cdot 10^{-6}$
6	11590140	rs9469574	А	G	TMEM170B	$^{++}$	3,413	2,043	1,370	0.22	0.139	0.23	0.127	$2.87\cdot 10^{-2}$	1.136	4.444	$8.83\cdot 10^{-6}$
11	46810916	rs11038993	С	А	CKAP5	$^{++}$	3,415	2,044	1,371	0.474	0.158	0.513	0.107	$2.45\cdot 10^{-2}$	1.113	-4.373	$1.22\cdot 10^{-5}$
19	12014274	rs279205	G	А	ZNF69	$^{++}$	3,415	2,044	1,371	0.327	0.292	0.618	0.114	$2.64\cdot 10^{-2}$	1.121	4.321	$1.55\cdot 10^{-5}$
12	1642198	rs4765826	А	G	FBXL14	$^{++}$	3,415	2,044	1,371	0.168	0.16	0.226	0.138	$3.23 \cdot 10^{-2}$	1.149	4.292	$1.77\cdot 10^{-5}$
8	13356621	rs34591797	G	Т	DLC1	$^{++}$	3,415	2,044	1,371	$1.36\cdot 10^{-2}$	$8.22\cdot 10^{-4}$	0.118	0.478	0.112	1.613	4.274	$1.92\cdot 10^{-5}$
9	117453668	rs16930907	Т	С	RP11-402G3	$^{++}$	3,415	2,044	1,371	$5.81\cdot 10^{-2}$	$4.8\cdot 10^{-2}$	0.14	0.219	$5.21\cdot 10^{-2}$	1.245	4.214	$2.51\cdot 10^{-5}$
11	6348639	rs4758408	Т	С	PRKCDBP	$^{++}$	3,414	2,043	1,371	0.849	0.492	0.892	0.15	$3.59\cdot 10^{-2}$	1.162	-4.187	$2.83\cdot 10^{-5}$
8	95238312	rs2100602	А	G	CDH17	$^{++}$	3,413	2,042	1,371	$4.47\cdot 10^{-2}$	$2.85\cdot 10^{-2}$	0.177	0.25	$6.01\cdot 10^{-2}$	1.284	4.152	$3.3\cdot 10^{-5}$
11	64757496	rs10897540	С	Т	BATF2	$^{++}$	3,413	2,044	1,369	$4.76\cdot 10^{-2}$	$3.62\cdot 10^{-2}$	0.14	0.241	$5.83 \cdot 10^{-2}$	1.273	-4.142	$3.44\cdot 10^{-5}$
20	60735098	rs6121926	С	Т	SS18L1	$^{++}$	3,415	2,044	1,371	0.184	0.126	0.656	0.14	$3.42\cdot 10^{-2}$	1.15	4.088	$4.35\cdot 10^{-5}$
10	27459716	rs35571315	А	G	MASTL	$^{++}$	3,415	2,044	1,371	$1.14\cdot 10^{-2}$	$1.34\cdot 10^{-3}$	$1.27\cdot 10^{-2}$	0.462	0.115	1.587	4.031	$5.56\cdot 10^{-5}$
9	11114781	rs10809343	Т	С	PTPRD	$^{++}$	3,413	2,044	1,369	0.914	0.733	0.936	0.181	$4.49\cdot 10^{-2}$	1.199	-4.03	$5.57\cdot 10^{-5}$
2	240765562	rs12987919	А	G	NDUFA10	$^{++}$	$3,\!415$	2,044	1,371	0.61	0.38	0.638	0.1	$2.54\cdot 10^{-2}$	1.106	-3.946	$7.94\cdot 10^{-5}$
8	87330713	rs7003059	Т	С	WWP1	++	$3,\!415$	2,044	1,371	0.276	0.272	0.302	0.108	$2.73\cdot 10^{-2}$	1.114	3.937	$8.27\cdot 10^{-5}$

4.4 Previously identified risk loci

Table 6 shows statistics from the META cohort for 24 loci that were shown to be significantly associated with Diastolic Blood Pressure in the 2011 Nature paper by Ehret et al [9]. Where a previously reported variant was not genotyped in the study (indicated by $\bar{R}^2 < 1$), if available, a tagging variant in LD with the reported variant $(\bar{R}^2 >= 0.7 \text{ and within 250kb})$ was provided. Tags were identified using 1000 Genomes data. None of the variants shows even nominal significance (p < 0.05) in this study. Out of the 20 variants in both studies, 10 exhibit the same direction of effect with the known result (binomial test p = 0.588).

Table 6: Top known loci in META model invn Adjusted AGE_BP+AGE_BP2+SEX+BMI (**bold** variants indicate matching direction of effect)

CHR	POS	ID	EA	OA	N	FREQAVG	FREQ _{MIN}	FREQMAX	EFFECT	STDERR	Р	DIR	GENECLOSEST	R ²	ID _{KNOWN}	N _{KNOWN}	EFFECTKNOWN	STDERRKNOWN	PKNOWN
12	112007756	rs653178	т	С	3,415	0.533	0.487	0.908	$1.73\cdot 10^{-3}$	$2.48\cdot 10^{-2}$	0.944	-+	ATXN2	1	rs653178	$2 \cdot 10^5$	0.48	$6.26 \cdot 10^{-2}$	$1.64\cdot 10^{-14}$
12	111884608	rs3184504	т	С	3,415	0.535	0.489	0.908	$3.12\cdot 10^{-3}$	$2.49\cdot 10^{-2}$	0.9	+-	SH2B3	1	rs3184504	$2 \cdot 10^5$	0.48	$6.29 \cdot 10^{-2}$	$2.33\cdot 10^{-14}$
4	81164723	rs1458038	т	С	3,415	0.258	$8.42\cdot 10^{-2}$	0.279	$7.78\cdot 10^{-3}$	$2.78\cdot 10^{-2}$	0.78	$^{++}$	FGF5	1	rs1458038	$2 \cdot 10^5$	0.503	$7.02 \cdot 10^{-2}$	$7.91\cdot 10^{-13}$
12	112072424	rs11065987	G	А	3,414	0.422	$8.16\cdot 10^{-2}$	0.463	$5.4\cdot 10^{-3}$	$2.5\cdot 10^{-2}$	0.829	+-	BRAP	1	rs11065987	$2 \cdot 10^5$	0.449	$6.46 \cdot 10^{-2}$	$3.43\cdot 10^{-12}$
15	75077367	rs1378942	А	С	3,415	0.585	0.126	0.641	$2.24\cdot 10^{-2}$	$2.63\cdot 10^{-2}$	0.394	$^{++}$	CSK	1	rs1378942	$2 \cdot 10^5$	-0.445	$6.4 \cdot 10^{-2}$	$3.47\cdot 10^{-12}$
12	112486818	rs17696736	G	А	3,415	0.431	$8.56\cdot 10^{-2}$	0.474	$1.36\cdot 10^{-2}$	$2.49\cdot 10^{-2}$	0.583	+-	NAA25	1	rs17696736	$2 \cdot 10^5$	0.422	$6.34 \cdot 10^{-2}$	$2.8 \cdot 10^{-11}$
15	75125645	rs6495122	С	А	3,415	0.516	0.257	0.548	$1.85 \cdot 10^{-2}$	$2.47 \cdot 10^{-2}$	0.453	$^{++}$	CPLX3	1	rs6495122	$2 \cdot 10^{5}$	0.383	$6.23 \cdot 10^{-2}$	$8.41 \cdot 10^{-10}$
15	75047426	rs2470890	Т	С	3,415	0.574	0.123	0.629	$3.53\cdot 10^{-2}$	$2.63\cdot 10^{-2}$	0.181	$^{++}$	CYP1A2	1	rs2470890	$2 \cdot 10^5$	0.394	$6.46 \cdot 10^{-2}$	$1.03\cdot 10^{-9}$
15	75115895	rs7162232	А	G	3,414	0.693	0.578	0.707	$2.54\cdot 10^{-2}$	$2.63\cdot 10^{-2}$	0.334	$^{++}$	LMAN1L	1	rs7162232	$2 \cdot 10^5$	-0.416	$6.89 \cdot 10^{-2}$	$1.58 \cdot 10^{-9}$
12	90008959	rs2681472	А	G	3,415	0.182	0.119	0.19	$2.34\cdot 10^{-2}$	$3.14\cdot 10^{-2}$	0.456	$^{++}$	ATP2B1	1	rs2681472	$2 \cdot 10^5$	-0.492	$8.36 \cdot 10^{-2}$	$3.9\cdot10^{-9}$
10	63524591	rs1530440	С	т	3,415	0.175	$7.35\cdot 10^{-2}$	0.187	$2.52\cdot 10^{-2}$	$3.19\cdot 10^{-2}$	0.43	$^{++}$	C10orf107	1	rs1530440	$2 \cdot 10^5$	-0.459	$7.92\cdot 10^{-2}$	$6.71\cdot 10^{-9}$
1	11862778	rs17367504	G	А	3,415	0.136	0.116	0.138	$9.32\cdot 10^{-3}$	$3.57\cdot 10^{-2}$	0.794	+-	MTHFR	1	rs17367504	$2 \cdot 10^5$	0.49	$8.61\cdot 10^{-2}$	$1.29\cdot 10^{-8}$
1	11887303	rs7537765	G	А	3,415	0.153	0.139	0.261	$1.55\cdot 10^{-2}$	$3.39\cdot 10^{-2}$	0.649	$^{++}$	CLCN6	1	rs7537765	$2 \cdot 10^5$	0.485	$8.56 \cdot 10^{-2}$	$1.43\cdot 10^{-8}$
12	89942390	rs11105328	А	G	3,415	0.181	0.144	0.185	$3.27 \cdot 10^{-2}$	$3.16\cdot 10^{-2}$	0.302	$^{++}$	POC1B-GALNT4	1	rs11105328	$2 \cdot 10^{5}$	-0.487	$8.66 \cdot 10^{-2}$	$1.83 \cdot 10^{-8}$
12	111818701	rs11065884	А	G	3,415	0.266	0.213	0.699	$7.46\cdot 10^{-3}$	$2.94\cdot 10^{-2}$	0.8	+-	FAM109A	1	rs11065884	$2 \cdot 10^5$	-0.409	$7.42\cdot 10^{-2}$	$3.57\cdot 10^{-8}$
15	75234610	rs11072518	С	Т	3,415	0.606	0.501	0.619	$1.75\cdot 10^{-2}$	$2.47\cdot 10^{-2}$	0.478	$^{++}$	COX5A	1	rs11072518	$2 \cdot 10^5$	-0.355	$6.45 \cdot 10^{-2}$	$3.78 \cdot 10^{-8}$
6	26107463	rs198846	А	G	3,415	0.846	0.842	0.876	$7 \cdot 10^{-3}$	$3.31\cdot 10^{-2}$	0.832	$^{++}$	HIST1H1T	1	rs198846	$2 \cdot 10^5$	-0.487	$8.85\cdot 10^{-2}$	$3.8\cdot10^{-8}$
12	111788402	rs10219736	С	т	3,415	0.213	0.187	0.425	$6.94\cdot 10^{-3}$	$3.03\cdot 10^{-2}$	0.819	$^{++}$	CUX2	1	rs10219736	$2 \cdot 10^5$	-0.414	$7.58 \cdot 10^{-2}$	$4.88\cdot 10^{-8}$
6	26107463	rs198846	А	G	3,415	0.846	0.842	0.876	$7 \cdot 10^{-3}$	$3.31\cdot 10^{-2}$	0.832	$^{++}$	HIST1H2BC	1	rs198833	$2 \cdot 10^5$	-0.485	$8.88\cdot 10^{-2}$	$4.58\cdot 10^{-8}$
15	75189930	rs1130741	G	А	3,414	0.5	0.312	0.524	$1.57\cdot 10^{-2}$	$2.46\cdot 10^{-2}$	0.522	$^{++}$	MPI	1	rs7495739	$2 \cdot 10^5$	0.335	$6.15\cdot 10^{-2}$	$5.02\cdot 10^{-8}$
15	75189930	rs1130741	G	А	3,414	0.5	0.312	0.524	$1.57 \cdot 10^{-2}$	$2.46\cdot 10^{-2}$	0.522	$^{++}$	SCAMP2	0.981	rs11072511	$2 \cdot 10^{5}$	0.339	$6.16 \cdot 10^{-2}$	$3.6 \cdot 10^{-8}$
12	112486818	rs17696736	G	А	3,415	0.431	$8.56\cdot 10^{-2}$	0.474	$1.36\cdot 10^{-2}$	$2.49\cdot 10^{-2}$	0.583	+-	TRAFD1	0.922	rs17630235	$2 \cdot 10^5$	0.447	$6.4 \cdot 10^{-2}$	$2.92\cdot10^{-12}$
12	112486818	rs17696736	G	А	3,415	0.431	$8.56\cdot 10^{-2}$	0.474	$1.36\cdot 10^{-2}$	$2.49\cdot 10^{-2}$	0.583	+-	HECTD4	0.913	rs11066188	$2 \cdot 10^5$	0.447	$6.41\cdot 10^{-2}$	$3.06\cdot 10^{-12}$
7	2508072	rs2906166	т	С	3,415	0.693	0.668	0.9	$3.12\cdot 10^{-2}$	$2.67\cdot 10^{-2}$	0.244	+-	GRIFIN	0.819	rs2969070	$2\cdot 10^5$	-0.386	$6.47\cdot 10^{-2}$	$2.57\cdot 10^{-9}$

5 Body Mass Index (BMI)

5.1 Summary

Figure 5: Distribution of BMI in META by cohort

Cohort	Array	Ancestry	Trans	Covars	PCs	N	Male	Female	Max	Min	μ	$ ilde{x}$	σ
META AFR	EX	AFR	invn	AGE_ANTHRO+AGE_ANTHRO2+SEX	0	383	188	195	59.514	17.442	30.944	29.756	7.364
META EUR	EX	EUR	invn	$AGE_ANTHRO{+}AGE_ANTHRO2{+}SEX$	3	3075	1868	1207	59.671	15.49	28.845	27.955	5.797

5.2 Calibration

Figure 6: QQ plots for BMI in the META analysis

Figure 7: Manhattan plots for BMI in the META analysis

5.3 Top associations

Table 8: Top variants in the META invn Adjusted AGE_ANTHRO+AGE_ANTHRO2+SEX model (**bold** variants indicate previously identified associations)

CHR	POS	ID	EA	OA	GENECLOSEST	DIR	Ν	MALE	FEMALE	FREQAVG	FREQMIN	FREQMAX	EFFECT	STDERR	OR	ZSCORE	Р
2	141190436	rs11897270	т	С	LRP1B	++	3,442	2,044	1,398	0.334	0.331	0.358	0.123	$2.56\cdot 10^{-2}$	1.131	4.807	$1.53\cdot 10^{-6}$
12	120029538	rs5005556	G	А	TMEM233	++	$3,\!458$	2,056	1,402	$6.26\cdot 10^{-2}$	$4.73\cdot 10^{-2}$	0.185	0.23	$4.97\cdot 10^{-2}$	1.258	-4.62	$3.84\cdot 10^{-6}$
13	68518831	rs2175815	т	С	PCDH9	++	$3,\!458$	2,056	1,402	0.478	0.478	0.482	0.106	$2.39\cdot 10^{-2}$	1.111	-4.41	$1.03\cdot 10^{-5}$
18	66541652	rs948638	С	А	CCDC102B	$^{++}$	3,458	2,056	1,402	0.762	0.758	0.792	0.12	$2.8 \cdot 10^{-2}$	1.128	4.307	$1.65\cdot 10^{-5}$
10	96493058	rs1126545	С	Т	CYP2C18	$^{++}$	3,458	2,056	1,402	0.153	0.145	0.211	0.143	$3.33\cdot 10^{-2}$	1.153	-4.284	$1.83\cdot 10^{-5}$
11	38590019	rs4756448	А	G	LRRC4C	$^{++}$	3,452	2,052	1,400	0.869	0.336	0.935	0.183	$4.31\cdot 10^{-2}$	1.201	4.251	$2.13\cdot 10^{-5}$
3	105333715	rs7621204	С	Т	ALCAM	$^{++}$	3,458	2,056	1,402	0.319	0.234	0.33	0.104	$2.53 \cdot 10^{-2}$	1.11	4.115	$3.87\cdot 10^{-5}$
10	96602398	rs28399513	Т	А	CYP2C19	$^{++}$	3,431	2,038	1,393	0.151	0.144	0.211	0.138	$3.37\cdot 10^{-2}$	1.147	-4.08	$4.51\cdot 10^{-5}$
13	100381250	rs9517863	А	G	CLYBL	$^{++}$	3,458	2,056	1,402	0.184	0.179	0.225	0.125	$3.08\cdot 10^{-2}$	1.133	-4.054	$5.04\cdot 10^{-5}$
6	56920804	rs12190575	G	А	KIAA1586	$^{++}$	3,455	2,054	1,401	0.153	0.152	0.153	0.134	$3.34\cdot 10^{-2}$	1.143	3.999	$6.35\cdot 10^{-5}$
10	10624738	rs4131374	А	G	CELF2	$^{++}$	3,405	2,025	1,380	0.294	0.289	0.335	0.106	$2.65\cdot 10^{-2}$	1.112	-3.997	$6.41\cdot 10^{-5}$
11	284503	exm869836	С	Т	NLRP6	$^{++}$	3,426	2,036	1,390	$5.84\cdot 10^{-4}$	$4.93\cdot 10^{-4}$	$1.31\cdot 10^{-3}$	1.987	0.497	7.291	-3.997	$6.41\cdot 10^{-5}$
21	26305530	rs9984573	С	А	MRPL39	+-	3,439	2,044	1,395	0.265	$7.85\cdot 10^{-2}$	0.288	0.11	$2.77\cdot 10^{-2}$	1.116	-3.974	$7.07\cdot 10^{-5}$
14	50462432	rs4900974	G	Т	ARF6	$^{++}$	3,452	2,053	1,399	0.734	0.709	0.937	0.108	$2.74\cdot 10^{-2}$	1.115	-3.959	$7.52\cdot 10^{-5}$
1	20645086	rs35480773	А	Т	VWA5B1	+-	3,458	2,056	1,402	$5.78\cdot 10^{-2}$	$5.22\cdot 10^{-3}$	$6.44\cdot 10^{-2}$	0.201	$5.07\cdot 10^{-2}$	1.222	3.954	$7.7 \cdot 10^{-5}$
8	144722192	rs4873814	G	А	ZNF623	$^{++}$	3,458	2,056	1,402	0.13	0.123	0.189	0.142	$3.59\cdot 10^{-2}$	1.152	3.948	$7.88\cdot 10^{-5}$
15	26469100	rs8026670	G	А	GABRB3	+-	3,455	2,055	1,400	0.179	0.135	0.533	0.13	$3.3\cdot10^{-2}$	1.139	3.942	$8.07\cdot 10^{-5}$
2	228293381	rs4470337	А	G	AGFG1	$^{++}$	3,458	2,056	1,402	0.567	0.529	0.571	$9.6 \cdot 10^{-2}$	$2.44\cdot 10^{-2}$	1.101	-3.938	$8.21\cdot 10^{-5}$
19	1978271	rs740423	С	т	CSNK1G2	$^{++}$	$3,\!458$	2,056	1,402	0.119	$9.09\cdot 10^{-2}$	0.347	0.148	$3.77\cdot 10^{-2}$	1.16	-3.928	$8.56\cdot 10^{-5}$
14	84351424	rs11159614	G	А	FLRT2	++	$3,\!450$	2,049	1,401	0.114	0.107	0.17	0.147	$3.78\cdot 10^{-2}$	1.159	-3.897	$9.76\cdot 10^{-5}$

5.4 Previously identified risk loci

Table 9 shows statistics from the META cohort for 50 loci that were shown to be significantly associated with Body Mass Index in the 2015 Nature paper by Locke et al [11]. Where a previously reported variant was not genotyped in the study (indicated by $\bar{R}^2 < 1$), if available, a tagging variant in LD with the reported variant $(\bar{R}^2 >= 0.7 \text{ and within 250kb})$ was provided. Tags were identified using 1000 Genomes data. There are 12 variants that show at least nominal significance (p < 0.05) in this study. Out of the 50 variants in both studies, 42 exhibit the same direction of effect with the known result (binomial test p = 5.82e - 07).

Table 9: Top known loci in META model invn Adjusted AGE_ANTHRO+AGE_ANTHRO2+SEX (**bold** variants indicate matching direction of effect)

CHR	POS	ID	EA	OA	N	FREQAVG	FREQMIN	FREQMAX	EFFECT	STDERR	Р	DIR	GENECLOSEST	R ²	IDKNOWN	NKNOWN	EFFECTKNOWN	STDERRKNOWN	PKNOWN
16	53803574	rs1558902	А	т	3.457	0.393	0.107	0.429	$8.19 \cdot 10^{-2}$	$2.51 \cdot 10^{-2}$	$1.1 \cdot 10^{-3}$	++	FTO	1	rs1558902	$3.22 \cdot 10^{5}$	$-8.18 \cdot 10^{-2}$	$3.1 \cdot 10^{-3}$	$7.51 \cdot 10^{-153}$
18	57839769	rs571312	с	А	3.458	0.244	0.231	0.35	$3.85 \cdot 10^{-2}$	$2.76 \cdot 10^{-2}$	0.162	++	MC4R	1	rs571312	$3.22 \cdot 10^{5}$	$-5.53 \cdot 10^{-2}$	$3.6 \cdot 10^{-3}$	$1.45 \cdot 10^{-52}$
2	622827	rs2867125	С	т	3,458	0.822	0.814	0.885	$8.43 \cdot 10^{-2}$	$3.13 \cdot 10^{-2}$	$7.09 \cdot 10^{-3}$	++	TMEM18	1	rs2867125	$3.22 \cdot 10^{5}$	$5.92 \cdot 10^{-2}$	$4 \cdot 10^{-3}$	$2.81 \cdot 10^{-49}$
18	57757978	rs11662368	А	G	3,452	0.259	0.257	0.272	$2.26 \cdot 10^{-2}$	$2.71 \cdot 10^{-2}$	0.405	++	PMAIP1	1	rs11662368	$3.22 \cdot 10^{5}$	$-4.8 \cdot 10^{-2}$	$3.6 \cdot 10^{-3}$	$1.2 \cdot 10^{-41}$
4	45175691	rs13130484	т	С	3,458	0.419	0.26	0.439	$2.6 \cdot 10^{-3}$	$2.41 \cdot 10^{-2}$	0.914	+-	GNPDA2	1	rs13130484	$3.22 \cdot 10^{5}$	$4.01 \cdot 10^{-2}$	$3.1 \cdot 10^{-3}$	$4.24 \cdot 10^{-38}$
1	177889480	rs543874	G	А	3,458	0.181	0.176	0.219	$5.03 \cdot 10^{-2}$	$3.15\cdot 10^{-2}$	0.111	+-	SEC16B	1	rs543874	$3.22\cdot 10^5$	$4.82 \cdot 10^{-2}$	$3.9 \cdot 10^{-3}$	$2.62 \cdot 10^{-35}$
6	50865820	rs943005	т	С	3,458	0.164	$9.4 \cdot 10^{-2}$	0.173	$6.76\cdot 10^{-2}$	$3.25\cdot 10^{-2}$	$3.73 \cdot 10^{-2}$	+-	TFAP2B	1	rs943005	$3.22\cdot 10^5$	$4.43 \cdot 10^{-2}$	$4 \cdot 10^{-3}$	$1.39 \cdot 10^{-28}$
11	27728539	rs2030323	с	А	3,457	0.806	0.791	0.928	$1.02 \cdot 10^{-2}$	$3.08\cdot 10^{-2}$	0.739	$^{++}$	BDNF	1	rs2030323	$3.22\cdot 10^5$	$4.07 \cdot 10^{-2}$	$3.8 \cdot 10^{-3}$	$2.04 \cdot 10^{-27}$
1	72823713	rs990871	т	С	3,458	0.618	0.436	0.641	$2.13 \cdot 10^{-2}$	$2.52\cdot 10^{-2}$	0.398	$^{++}$	NEGR1	1	rs990871	$3.22 \cdot 10^5$	$3.29 \cdot 10^{-2}$	$3.1 \cdot 10^{-3}$	$1.17 \cdot 10^{-25}$
12	50247468	rs7138803	А	G	3,458	0.357	0.176	0.379	$4.08\cdot 10^{-2}$	$2.52\cdot 10^{-2}$	0.105	$^{++}$	BCDIN3D	1	rs7138803	$3.22\cdot 10^5$	$3.15 \cdot 10^{-2}$	$3.1 \cdot 10^{-3}$	$8.15\cdot 10^{-24}$
16	28885659	rs7359397	т	С	3,458	0.321	$7.57\cdot 10^{-2}$	0.351	$8.87\cdot 10^{-2}$	$2.59\cdot 10^{-2}$	$6.04\cdot 10^{-4}$	$^{++}$	SH2B1	1	rs7359397	$3.22 \cdot 10^5$	$3.06 \cdot 10^{-2}$	$3.1 \cdot 10^{-3}$	$7.4 \cdot 10^{-23}$
2	25141538	rs11676272	G	А	3,458	0.503	0.461	0.834	$4.88 \cdot 10^{-2}$	$2.5 \cdot 10^{-2}$	$5.08 \cdot 10^{-2}$	$^{++}$	ADCY3	1	rs11676272	$3.22 \cdot 10^{5}$	$3.22 \cdot 10^{-2}$	$3.4 \cdot 10^{-3}$	$1.12 \cdot 10^{-21}$
16	28837515	rs8049439	С	т	3,457	0.367	0.36	0.415	$7 \cdot 10^{-2}$	$2.47\cdot 10^{-2}$	$4.67\cdot 10^{-3}$	+-	ATXN2L	1	rs8049439	$3.22 \cdot 10^5$	$2.96 \cdot 10^{-2}$	$3.1 \cdot 10^{-3}$	$1.55 \cdot 10^{-21}$
3	185834290	rs7647305	С	т	3,457	0.767	0.56	0.792	$9.22 \cdot 10^{-3}$	$2.89\cdot 10^{-2}$	0.75	$^{++}$	ETV5	1	rs7647305	$3.22 \cdot 10^5$	$3.58 \cdot 10^{-2}$	$3.8 \cdot 10^{-3}$	$1.35 \cdot 10^{-20}$
2	25169200	rs1172294	G	А	3,458	0.503	0.46	0.85	$3.95\cdot 10^{-2}$	$2.5 \cdot 10^{-2}$	0.114	$^{++}$	DNAJC27	1	rs1172294	$3.22 \cdot 10^5$	$2.7 \cdot 10^{-2}$	$3.1 \cdot 10^{-3}$	$3.32 \cdot 10^{-18}$
19	46202172	rs2287019	С	т	3,458	0.193	0.119	0.203	$8.19\cdot 10^{-3}$	$3.07\cdot 10^{-2}$	0.789	$^{++}$	QPCTL	1	rs2287019	$3.22 \cdot 10^5$	$3.6 \cdot 10^{-2}$	$4.2 \cdot 10^{-3}$	$4.59 \cdot 10^{-18}$
16	28490517	rs151181	С	т	3,457	0.344	0.158	0.367	$6.82\cdot 10^{-2}$	$2.52\cdot 10^{-2}$	$6.83\cdot 10^{-3}$	$^{++}$	CLN3	1	rs151181	$3.22 \cdot 10^5$	$2.69 \cdot 10^{-2}$	$3.1 \cdot 10^{-3}$	$8.51 \cdot 10^{-18}$
16	19933600	rs12444979	С	т	3,458	0.145	$7.83\cdot 10^{-2}$	0.153	0.103	$3.38\cdot 10^{-2}$	$2.34\cdot 10^{-3}$	$^{++}$	GPRC5B	1	rs12444979	$3.22 \cdot 10^5$	$3.96 \cdot 10^{-2}$	$4.6 \cdot 10^{-3}$	$1.34 \cdot 10^{-17}$
16	28543381	rs12446550	А	G	3,451	0.359	0.217	0.377	$6.67\cdot 10^{-2}$	$2.49\cdot 10^{-2}$	$7.44\cdot 10^{-3}$	+-	NUPR1	1	rs12446550	$3.22\cdot 10^5$	$2.6 \cdot 10^{-2}$	$3.1 \cdot 10^{-3}$	$1.46 \cdot 10^{-17}$
15	68086838	rs2241423	G	А	3,457	0.256	0.243	0.356	$1.57\cdot 10^{-2}$	$2.78\cdot 10^{-2}$	0.572	+-	MAP2K5	1	rs2241423	$3.22\cdot 10^5$	$3.1 \cdot 10^{-2}$	$3.7 \cdot 10^{-3}$	$2.37 \cdot 10^{-17}$
11	47650993	rs3817334	т	С	3,458	0.404	0.261	0.422	$1.1 \cdot 10^{-2}$	$2.46\cdot 10^{-2}$	0.656	$^{++}$	MTCH2	1	rs3817334	$3.22 \cdot 10^5$	$2.62 \cdot 10^{-2}$	$3.1 \cdot 10^{-3}$	$5.15 \cdot 10^{-17}$
5	75015242	rs2112347	т	G	3,458	0.378	0.363	0.493	$1.78\cdot 10^{-2}$	$2.5 \cdot 10^{-2}$	0.476	$^{++}$	POC5	1	rs2112347	$3.22 \cdot 10^5$	$2.61 \cdot 10^{-2}$	$3.1 \cdot 10^{-3}$	$6.19 \cdot 10^{-17}$
16	28631585	rs1968752	т	G	3,441	0.649	0.497	0.668	$5.06\cdot 10^{-2}$	$2.5 \cdot 10^{-2}$	$4.29\cdot 10^{-2}$	+-	SULT1A1	1	rs1968752	$3.22 \cdot 10^5$	$2.72 \cdot 10^{-2}$	$3.3 \cdot 10^{-3}$	$9.06 \cdot 10^{-17}$
11	47529947	rs7124681	А	С	3,458	0.405	0.262	0.422	$1.54\cdot 10^{-2}$	$2.46\cdot 10^{-2}$	0.532	$^{++}$	CELF1	1	rs7124681	$3.22 \cdot 10^5$	$2.59 \cdot 10^{-2}$	$3.1 \cdot 10^{-3}$	$1.16 \cdot 10^{-16}$
12	50218644	rs1031477	т	С	3,458	0.517	0.517	0.521	$4.45\cdot 10^{-2}$	$2.4\cdot 10^{-2}$	$6.29\cdot 10^{-2}$	$^{++}$	NCKAP5L	1	rs1031477	$3.22\cdot 10^5$	$2.47 \cdot 10^{-2}$	$3.1 \cdot 10^{-3}$	$6.17 \cdot 10^{-16}$
19	47569003	rs3810291	А	G	3,427	0.607	0.188	0.66	$7.76\cdot 10^{-2}$	$2.58\cdot 10^{-2}$	$2.59\cdot 10^{-3}$	$^{++}$	ZC3H4	1	rs3810291	$3.22\cdot 10^5$	$2.83 \cdot 10^{-2}$	$3.6 \cdot 10^{-3}$	$4.81 \cdot 10^{-15}$
11	27583129	rs7481311	т	С	3,458	0.793	0.696	0.805	$4 \cdot 10^{-2}$	$2.99\cdot 10^{-2}$	0.181	$^{++}$	LIN7C	1	rs7481311	$3.22\cdot 10^5$	$2.83 \cdot 10^{-2}$	$3.6 \cdot 10^{-3}$	$7.42 \cdot 10^{-15}$
5	74956517	rs253414	Т	С	3,453	0.646	0.457	0.67	$1.8\cdot 10^{-3}$	$2.54\cdot 10^{-2}$	0.944	+-	ANKDD1B	1	rs253414	$3.22\cdot 10^5$	$2.68 \cdot 10^{-2}$	$3.5 \cdot 10^{-3}$	$2.86 \cdot 10^{-14}$
9	28414339	rs10968576	А	G	3,457	0.292	0.176	0.306	$2.21\cdot 10^{-2}$	$2.67\cdot 10^{-2}$	0.408	+-	LINGO2	1	rs10968576	$3.22 \cdot 10^5$	$-2.49 \cdot 10^{-2}$	$3.3 \cdot 10^{-3}$	$6.61\cdot10^{-14}$
11	47432303	rs755553	G	А	3,457	0.65	0.602	0.656	$4.74\cdot 10^{-3}$	$2.54\cdot 10^{-2}$	0.852	+-	SLC39A13	1	rs755553	$3.22\cdot 10^5$	$2.45 \cdot 10^{-2}$	$3.3 \cdot 10^{-3}$	$7.31 \cdot 10^{-14}$
12	50263148	rs7132908	А	G	3,457	0.365	0.164	0.39	$2.23\cdot 10^{-2}$	$2.52\cdot 10^{-2}$	0.376	$^{++}$	FAIM2	1	rs7132908	$3.22\cdot 10^5$	$3.41 \cdot 10^{-2}$	$4.6 \cdot 10^{-3}$	$1.23 \cdot 10^{-13}$
1	74991644	rs1514175	Α	G	3,458	0.55	0.325	0.578	$1.73\cdot 10^{-2}$	$2.42\cdot 10^{-2}$	0.475	+-	FPGT-TNNI3K	1	rs1514175	$3.22 \cdot 10^5$	$2.3 \cdot 10^{-2}$	$3.1 \cdot 10^{-3}$	$1.46 \cdot 10^{-13}$
1	110082886	rs7550711	т	С	3,458	$2.46\cdot 10^{-2}$	$1.44\cdot 10^{-2}$	$2.59\cdot 10^{-2}$	$8.99\cdot 10^{-2}$	$7.7\cdot 10^{-2}$	0.243	+-	GPR61	1	rs7550711	$3.22 \cdot 10^5$	$6.62 \cdot 10^{-2}$	$9 \cdot 10^{-3}$	$1.56 \cdot 10^{-13}$
11	47385923	rs10838698	G	А	3,458	0.665	0.654	0.752	$1 \cdot 10^{-2}$	$2.58\cdot 10^{-2}$	0.697	+-	SPI1	1	rs10838698	$3.22\cdot 10^5$	$2.45 \cdot 10^{-2}$	$3.3 \cdot 10^{-3}$	$1.9 \cdot 10^{-13}$
16	28980531	rs11150675	G	А	3,456	0.326	0.121	0.352	$4.67\cdot 10^{-2}$	$2.59\cdot 10^{-2}$	$7.14\cdot 10^{-2}$	$^{++}$	NFATC2IP	1	rs11150675	$3.22 \cdot 10^5$	$2.38 \cdot 10^{-2}$	$3.2 \cdot 10^{-3}$	$2.03 \cdot 10^{-13}$
3	85850041	rs7640660	Т	С	3,452	0.239	0.224	0.358	$1.06\cdot 10^{-2}$	$2.86\cdot 10^{-2}$	0.712	-+	CADM2	1	rs7640660	$3.22\cdot 10^5$	$2.75 \cdot 10^{-2}$	$3.8 \cdot 10^{-3}$	$3.97 \cdot 10^{-13}$
16	28992646	rs3922668	G	А	3,456	0.409	0.373	0.702	$4.85 \cdot 10^{-2}$	$2.49 \cdot 10^{-2}$	$5.2 \cdot 10^{-2}$	$^{++}$	SPNS1	1	rs3922668	$3.22 \cdot 10^{5}$	$2.35 \cdot 10^{-2}$	$3.3 \cdot 10^{-3}$	$9.6 \cdot 10^{-13}$
13	54102206	rs12429545	А	G	3,458	0.121	$4.96 \cdot 10^{-2}$	0.13	$6.41 \cdot 10^{-3}$	$3.72 \cdot 10^{-2}$	0.863	-+	OLFM4	1	rs12429545	$3.22 \cdot 10^{5}$	$3.34 \cdot 10^{-2}$	$4.7 \cdot 10^{-3}$	$1.09 \cdot 10^{-12}$
1	49438005	rs3127553	А	G	3,458	0.647	0.636	0.735	$1.65 \cdot 10^{-2}$	$2.52 \cdot 10^{-2}$	0.512	$^{++}$	AGBL4	1	rs3127553	$3.22 \cdot 10^5$	$-2.3 \cdot 10^{-2}$	$3.2 \cdot 10^{-3}$	$1.25 \cdot 10^{-12}$
11	115022404	rs12286929	G	А	3,457	0.536	0.532	0.573	$1.29 \cdot 10^{-2}$	$2.41 \cdot 10^{-2}$	0.595	$^{++}$	CADM1	1	rs12286929	$3.22 \cdot 10^{5}$	$2.17 \cdot 10^{-2}$	$3.1 \cdot 10^{-3}$	$1.31 \cdot 10^{-12}$
4	103188709	rs13107325	т	С	3,458	$7.53 \cdot 10^{-2}$	$1.31 \cdot 10^{-2}$	$8.31\cdot 10^{-2}$	$7.66 \cdot 10^{-2}$	$4.59 \cdot 10^{-2}$	$9.54 \cdot 10^{-2}$	+-	SLC39A8	1	rs13107325	$3.22 \cdot 10^{5}$	$4.77 \cdot 10^{-2}$	$6.8 \cdot 10^{-3}$	$1.83 \cdot 10^{-12}$
10	114758349	rs7903146	С	т	3,458	0.303	0.283	0.306	$6.93 \cdot 10^{-4}$	$2.62 \cdot 10^{-2}$	0.979	-+	TCF7L2	1	rs7903146	$3.22 \cdot 10^{5}$	$2.34 \cdot 10^{-2}$	$3.4 \cdot 10^{-3}$	$1.11 \cdot 10^{-11}$
11	47694699	rs4539273	т	С	3,412	0.546	0.537	0.612	$2.84 \cdot 10^{-2}$	$2.41 \cdot 10^{-2}$	0.239	$^{++}$	AGBL2	1	rs4539273	$3.22 \cdot 10^{5}$	$2.05 \cdot 10^{-2}$	$3.1 \cdot 10^{-3}$	$1.69 \cdot 10^{-11}$
2	59305625	rs1016287	Т	С	3,457	0.701	0.693	0.766	$1.73 \cdot 10^{-2}$	$2.61 \cdot 10^{-2}$	0.508	+-	FANCL	1	rs1016287	$3.22 \cdot 10^{5}$	$2.29 \cdot 10^{-2}$	$3.4 \cdot 10^{-3}$	$2.25 \cdot 10^{-11}$
11	27471596	rs4923445	G	А	3,458	0.161	$9.27\cdot 10^{-2}$	0.169	$3.57 \cdot 10^{-2}$	$3.3 \cdot 10^{-2}$	0.279	$^{++}$	LGR4	1	rs4923445	$3.22 \cdot 10^{5}$	$-2.74 \cdot 10^{-2}$	$4.1 \cdot 10^{-3}$	$2.26 \cdot 10^{-11}$
16	28944396	rs2904880	С	G	3,458	0.736	0.71	0.941	$6.02 \cdot 10^{-2}$	$2.72 \cdot 10^{-2}$	$2.69 \cdot 10^{-2}$	++	CD19	1	rs2904880	$3.22 \cdot 10^{5}$	$-2.39 \cdot 10^{-2}$	$3.6 \cdot 10^{-3}$	$4.11 \cdot 10^{-11}$
16	28594549	rs4788073	G	А	3,458	0.322	0.205	0.336	$7.12 \cdot 10^{-2}$	$2.57 \cdot 10^{-2}$	$5.59 \cdot 10^{-3}$	++	SGF29	1	rs4788073	$3.22 \cdot 10^{5}$	$2.5 \cdot 10^{-2}$	$3.8 \cdot 10^{-3}$	$4.74 \cdot 10^{-11}$
11	47929846	rs6485795	А	G	3,458	0.282	$7.44 \cdot 10^{-2}$	0.308	$7.08 \cdot 10^{-3}$	$2.7 \cdot 10^{-2}$	0.793	$^{++}$	NUP160	1	rs6485795	$3.22 \cdot 10^{5}$	$-2.24 \cdot 10^{-2}$	$3.4 \cdot 10^{-3}$	$6.31 \cdot 10^{-11}$
8	76608407	rs2588790	С	т	3,458	0.256	$6.4 \cdot 10^{-2}$	0.28	$9.58 \cdot 10^{-3}$	$2.73 \cdot 10^{-2}$	0.726	+-	HNF4G	1	rs2588790	$3.22 \cdot 10^{5}$	$2.71 \cdot 10^{-2}$	$4.2 \cdot 10^{-3}$	$1.1 \cdot 10^{-10}$
2	213413231	rs7599312	G	А	3,458	0.27	0.253	0.406	$2.53 \cdot 10^{-2}$	$2.71 \cdot 10^{-2}$	0.35	$^{++}$	ERBB4	1	rs7599312	$3.22 \cdot 10^{5}$	$2.2 \cdot 10^{-2}$	$3.4 \cdot 10^{-3}$	$1.17 \cdot 10^{-10}$

6 Systolic Blood Pressure (SBP15)

0.030 0.05 0.025 0.04 0.020 0.03 0.015 0.02 0.010 0.01 0.005 0.000 0.00 . 100 . 140 220 . 150 80 120 160 180 200 100 125 175 200 225 50 75 (a) AFR (b) EUR

6.1 Summary

Figure 8: Distribution of SBP15 in META by cohort

Table 10:	Samples	with	Systolic	Blood	Pressure	data	summarized	by	cohort,	transformation,	and	run-time
adjustmen	ts											

Cohort	Array	Ancestry	Trans	Covars	PCs	Ν	Male	Female	Max	Min	μ	$ ilde{x}$	σ
META AFR	EX	AFR	invn	AGE_BP+AGE_BP2+SEX+BMI	3	374	187	187	200.0	90.0	123.545	122.0	15.336
META EUR	EX	EUR	invn	$AGE_BP{+}AGE_BP2{+}SEX{+}BMI$	0	3063	1863	1200	225.0	80.0	123.536	122.0	14.992

6.2 Calibration

(a) invn Adjusted AGE_BP+AGE_BP2+SEX+BMI

Figure 9: QQ plots for SBP15 in the META analysis

Figure 10: Manhattan plots for SBP15 in the META analysis

6.3 Top associations

Table 11: Top variants in the META invn	Adjusted AGE_	_BP+AGE_	_BP2+SEX+BMI	model (b	old variant	S
indicate previously identified associations)						

CHR	POS	ID	EA	OA	GENECLOSEST	DIR	Ν	MALE	FEMALE	FREQAVG	FREQ _{MIN}	FREQMAX	EFFECT	STDERR	OR	ZSCORE	Р
17	650156	rs182380523	А	G	GEMIN4	++	3,437	2,050	1,387	$5.53\cdot 10^{-3}$	$3.1 \cdot 10^{-3}$	$2.54\cdot 10^{-2}$	0.743	0.16	2.101	-4.643	$3.44\cdot 10^{-6}$
18	9629316	rs682431	т	G	PPP4R1	$^{++}$	3,435	2,048	1,387	0.329	0.316	0.33	0.117	$2.54\cdot 10^{-2}$	1.124	-4.585	$4.53\cdot 10^{-6}$
4	91952313	rs6819554	С	т	CCSER1	+-	3,437	2,050	1,387	0.534	0.513	0.703	0.105	$2.42\cdot 10^{-2}$	1.111	-4.35	$1.36\cdot 10^{-5}$
14	33970530	rs17091741	А	G	NPAS3	$^{++}$	3,435	2,048	1,387	0.201	$9.63\cdot 10^{-2}$	0.213	0.131	$3.02\cdot 10^{-2}$	1.14	-4.336	$1.45\cdot 10^{-5}$
19	33358012	rs10404771	G	Т	SLC7A9	$^{++}$	3,436	2,050	1,386	0.201	0.2	0.205	0.13	$3.01 \cdot 10^{-2}$	1.139	4.321	$1.56 \cdot 10^{-5}$
19	39542089	rs7259197	G	А	FBXO27	$^{++}$	3,437	2,050	1,387	0.555	0.503	0.562	0.102	$2.43\cdot 10^{-2}$	1.107	4.199	$2.68\cdot 10^{-5}$
6	130966801	rs2136055	Т	С	SMLR1	+-	$3,\!417$	2,039	1,378	0.338	0.298	0.661	0.11	$2.65\cdot 10^{-2}$	1.116	4.164	$3.13 \cdot 10^{-5}$
13	107171744	rs7490924	G	А	EFNB2	$^{++}$	$3,\!429$	2,046	1,383	0.539	0.432	0.552	0.101	$2.43\cdot 10^{-2}$	1.106	4.151	$3.31\cdot 10^{-5}$
13	87599109	rs1718018	С	А	SLITRK5	$^{++}$	3,404	2,027	1,377	0.242	0.233	0.316	0.118	$2.84\cdot 10^{-2}$	1.125	4.137	$3.52\cdot 10^{-5}$
6	25758448	rs17268697	G	Т	SLC17A4	+-	$3,\!437$	2,050	1,387	0.133	$3.61\cdot 10^{-2}$	0.145	0.144	$3.55\cdot 10^{-2}$	1.155	-4.062	$4.87\cdot 10^{-5}$
8	97534651	rs2575735	С	Т	SDC2	$^{++}$	3,393	2,031	1,362	0.674	0.57	0.686	0.106	$2.62\cdot 10^{-2}$	1.112	-4.057	$4.96\cdot 10^{-5}$
15	61994134	rs2414739	G	А	VPS13C	$^{++}$	3,437	2,050	1,387	0.707	0.519	0.73	0.109	$2.69\cdot 10^{-2}$	1.115	-4.056	$5 \cdot 10^{-5}$
13	25831888	rs7995033	Т	С	MTMR6	$^{++}$	$3,\!437$	2,050	1,387	0.766	0.251	0.829	0.126	$3.11\cdot 10^{-2}$	1.134	-4.048	$5.17\cdot 10^{-5}$
22	29791234	rs174775	G	А	AP1B1	+-	3,437	2,050	1,387	0.575	0.536	0.893	0.1	$2.48\cdot 10^{-2}$	1.106	4.04	$5.34\cdot 10^{-5}$
14	95297441	rs1243513	G	А	GSC	$^{++}$	$3,\!437$	2,050	1,387	0.553	0.278	0.586	$9.85\cdot 10^{-2}$	$2.46\cdot 10^{-2}$	1.104	-4.01	$6.07\cdot 10^{-5}$
5	74324548	rs3811987	А	G	GCNT4	$^{++}$	3,436	2,050	1,386	0.334	0.294	0.664	0.106	$2.66 \cdot 10^{-2}$	1.112	3.99	$6.61\cdot 10^{-5}$
14	75165825	rs4899530	А	G	AC007956	$^{++}$	3,435	2,050	1,385	0.235	0.203	0.496	0.116	$2.92\cdot 10^{-2}$	1.124	-3.983	$6.8\cdot 10^{-5}$
14	20920250	rs2275007	Т	С	OSGEP	$^{++}$	3,437	2,050	1,387	0.595	0.579	0.597	$9.75 \cdot 10^{-2}$	$2.45 \cdot 10^{-2}$	1.102	-3.979	$6.92\cdot 10^{-5}$
10	101222490	rs11593108	т	С	GOT1	$^{++}$	$3,\!437$	2,050	1,387	0.155	0.1	0.161	0.133	$3.34\cdot 10^{-2}$	1.142	3.977	$6.99\cdot 10^{-5}$
3	193806588	rs9872487	G	А	HES1	++	$3,\!435$	2,048	1,387	0.265	0.224	0.603	0.115	$2.9\cdot 10^{-2}$	1.122	3.975	$7.03\cdot 10^{-5}$

6.4 Previously identified risk loci

Table 12 shows statistics from the META cohort for 21 loci that were shown to be significantly associated with Systolic Blood Pressure in the 2011 Nature paper by Ehret et al [15]. Where a previously reported variant was not genotyped in the study (indicated by $\bar{R}^2 < 1$), if available, a tagging variant in LD with the reported variant $(\bar{R}^2 >= 0.7 \text{ and within 250kb})$ was provided. Tags were identified using 1000 Genomes data. None of the variants shows even nominal significance (p < 0.05) in this study. Out of the 19 variants in both studies, 9 exhibit the same direction of effect with the known result (binomial test p = 0.676).

Table 12: Top known loci in META model invn Adjusted AGE_BP+AGE_BP2+SEX+BMI (**bold** variants indicate matching direction of effect)

CHR	POS	ID	EA	OA	Ν	FREQAVG	FREQ _{MIN}	FREQMAX	EFFECT	STDERR	Р	DIR	GENECLOSEST	\mathbb{R}^2	ID KNOWN	NKNOWN	EFFECTKNOWN	STDERRKNOWN	PKNOWN
12	90060586	rs17249754	G	А	3,437	0.185	0.14	0.191	$2.51\cdot 10^{-2}$	$3.1\cdot 10^{-2}$	0.417	+-	ATP2B1	1	rs17249754	$2 \cdot 10^5$	0.955	0.134	$9.73\cdot 10^{-13}$
1	11862778	rs17367504	G	А	3,437	0.135	0.116	0.138	$7.72\cdot 10^{-3}$	$3.54\cdot 10^{-2}$	0.827	+-	MTHFR	1	rs17367504	$2 \cdot 10^5$	0.861	0.136	$2.11 \cdot 10^{-10}$
15	75077367	rs1378942	А	С	3,437	0.584	0.126	0.64	$2.53\cdot 10^{-2}$	$2.61\cdot 10^{-2}$	0.332	$^{++}$	CSK	1	rs1378942	$2 \cdot 10^5$	-0.632	0.101	$3.43 \cdot 10^{-10}$
1	11887303	rs7537765	G	А	3,437	0.152	0.139	0.261	$3.27\cdot 10^{-2}$	$3.37\cdot 10^{-2}$	0.331	$^{++}$	CLCN6	1	rs7537765	$2 \cdot 10^5$	0.84	0.135	$4.73 \cdot 10^{-10}$
10	104846178	rs11191548	т	С	3,426	$7.85\cdot 10^{-2}$	$6.15\cdot 10^{-2}$	$8.06\cdot 10^{-2}$	$6.38\cdot 10^{-2}$	$4.42\cdot 10^{-2}$	0.149	$^{++}$	CNNM2	1	rs11191548	$2 \cdot 10^5$	1.083	0.174	$5.03 \cdot 10^{-10}$
10	104939215	rs11191593	т	С	3,436	$8.31\cdot 10^{-2}$	$7.75\cdot 10^{-2}$	$8.38\cdot 10^{-2}$	$6.16\cdot 10^{-2}$	$4.31\cdot 10^{-2}$	0.153	$^{++}$	NT5C2	1	rs11191593	$2 \cdot 10^5$	1.075	0.173	$5.43 \cdot 10^{-10}$
10	104594507	rs1004467	А	G	3,437	0.106	$9.45 \cdot 10^{-2}$	0.198	$4.3 \cdot 10^{-2}$	$3.9 \cdot 10^{-2}$	0.27	$^{++}$	CYP17A1	1	rs1004467	$2 \cdot 10^{5}$	-1.01	0.164	$6.61 \cdot 10^{-10}$
12	112007756	rs653178	С	т	3,437	0.534	0.488	0.908	$2.71\cdot 10^{-3}$	$2.46\cdot 10^{-2}$	0.912	+-	ATXN2	1	rs653178	$2 \cdot 10^5$	-0.605	$9.88 \cdot 10^{-2}$	$9.3 \cdot 10^{-10}$
12	89942390	rs11105328	А	G	3,437	0.18	0.144	0.185	$3.91\cdot 10^{-2}$	$3.14\cdot 10^{-2}$	0.213	$^{++}$	POC1B-GALNT4	1	rs11105328	$2 \cdot 10^5$	-0.838	0.137	$1.08\cdot 10^{-9}$
10	104660004	rs11191454	А	G	3,437	$7.55\cdot 10^{-2}$	$1.87\cdot 10^{-2}$	$8.24\cdot 10^{-2}$	$6.11\cdot 10^{-2}$	$4.56\cdot 10^{-2}$	0.18	$^{++}$	BORCS7-ASMT	1	rs11191454	$2 \cdot 10^5$	-1.043	0.171	$1.12\cdot 10^{-9}$
12	111884608	rs3184504	т	С	3,437	0.535	0.49	0.908	$5.11\cdot 10^{-3}$	$2.47\cdot 10^{-2}$	0.836	+-	SH2B3	1	rs3184504	$2 \cdot 10^5$	0.598	$9.93 \cdot 10^{-2}$	$1.69\cdot 10^{-9}$
4	81164723	rs1458038	т	С	3,437	0.257	$8.42\cdot 10^{-2}$	0.278	$2.37\cdot 10^{-2}$	$2.75\cdot 10^{-2}$	0.389	$^{++}$	FGF5	1	rs1458038	$2 \cdot 10^5$	0.662	0.111	$2.12\cdot 10^{-9}$
11	16902268	rs381815	С	т	3,428	0.275	0.189	0.285	$2.25\cdot 10^{-2}$	$2.72\cdot 10^{-2}$	0.408	+-	PLEKHA7	1	rs381815	$2 \cdot 10^5$	-0.655	0.11	$2.45\cdot 10^{-9}$
10	104546284	rs486955	т	С	3,435	0.879	0.723	0.898	$1.58\cdot 10^{-2}$	$3.75\cdot 10^{-2}$	0.674	$^{++}$	WBP1L	1	rs486955	$2 \cdot 10^5$	0.895	0.156	$9.47\cdot 10^{-9}$
12	112072424	rs11065987	А	G	3,436	0.421	$8.16\cdot 10^{-2}$	0.463	$5.82\cdot 10^{-3}$	$2.47\cdot 10^{-2}$	0.814	$^{++}$	BRAP	1	rs11065987	$2 \cdot 10^5$	-0.57	0.102	$2.12\cdot 10^{-8}$
15	75115895	rs7162232	А	G	3,436	0.692	0.578	0.706	$2.43\cdot 10^{-2}$	$2.61\cdot 10^{-2}$	0.352	+-	LMAN1L	1	rs7162232	$2 \cdot 10^5$	-0.606	0.109	$2.33\cdot 10^{-8}$
12	112486818	rs17696736	G	А	3,437	0.431	$8.56\cdot 10^{-2}$	0.473	$5.57\cdot 10^{-3}$	$2.46\cdot 10^{-2}$	0.821	+-	NAA25	1	rs17696736	$2 \cdot 10^5$	0.549	$9.96 \cdot 10^{-2}$	$3.43\cdot 10^{-8}$
11	100593538	rs633185	С	G	3,434	0.719	0.711	0.783	$1.85\cdot 10^{-2}$	$2.7 \cdot 10^{-2}$	0.493	+-	ARHGAP42	1	rs633185	$2 \cdot 10^5$	-0.584	0.107	$5.23\cdot 10^{-8}$
10	104652323	rs11191447	С	т	3,437	$8.41\cdot 10^{-2}$	$8.02\cdot 10^{-2}$	$8.46\cdot 10^{-2}$	$8.05\cdot 10^{-2}$	$4.3\cdot 10^{-2}$	$6.12\cdot 10^{-2}$	$^{++}$	AS3MT	1	rs3740390	$2 \cdot 10^5$	-1.005	0.172	$4.61\cdot 10^{-9}$
12	112486818	rs17696736	G	А	3,437	0.431	$8.56\cdot 10^{-2}$	0.473	$5.57\cdot 10^{-3}$	$2.46\cdot 10^{-2}$	0.821	+-	TRAFD1	0.922	rs17630235	$2 \cdot 10^5$	0.569	0.1	$1.45\cdot 10^{-8}$
12	112486818	rs17696736	G	А	3,437	0.431	$8.56\cdot 10^{-2}$	0.473	$5.57\cdot 10^{-3}$	$2.46\cdot 10^{-2}$	0.821	+-	HECTD4	0.913	rs11066188	$2 \cdot 10^5$	0.567	0.101	$1.72\cdot 10^{-8}$

7 HDL Cholesterol (HDL)

7.1 Summary

Figure 11: Distribution of HDL in META by cohort

Table 13: Samples with HDL Cholesterol data summarized by cohort, transformation, and run-time adjustments

Cohort	Array	Ancestry	Trans	Covars	PCs	Ν	Male	Female	Max	Min	μ	$ ilde{x}$	σ
META AFR	EX	AFR	invn	AGE_LIPIDS+AGE_LIPIDS2+SEX+BMI	0	277	139	138	109.0	18.0	49.852	48.0	13.075
META EUR	EX	EUR	invn	$AGE_LIPIDS{+}AGE_LIPIDS2{+}SEX{+}BMI$	1	1515	894	621	152.0	22.0	49.16	46.0	14.914

7.2 Calibration

(a) invn Adjusted AGE_LIPIDS+AGE_LIPIDS2+SEX+BMI

Figure 12: QQ plots for HDL in the META analysis

Figure 13: Manhattan plots for HDL in the META analysis

7.3 Top associations

Table 14: Top variants in the META invn Adjust	ed AGE	_LIPIDS+AGE_	_LIPIDS2+SEX+BM	11 model (bol	d
variants indicate previously identified associations)					

CHR	POS	ID	EA	OA	GENECLOSEST	DIR	Ν	MALE	FEMALE	FREQAVG	FREQ _{MIN}	FREQMAX	EFFECT	STDERR	OR	ZSCORE	Р
16	56989590	rs247616	т	С	CETP	++	1,791	1,032	759	0.299	0.251	0.308	0.269	$3.66\cdot 10^{-2}$	1.308	7.343	$2.09\cdot 10^{-13}$
8	4665649	rs10086985	G	А	CSMD1	$^{++}$	1,792	1,033	759	0.508	0.421	0.524	0.178	$3.31\cdot 10^{-2}$	1.195	5.377	$7.6\cdot 10^{-8}$
17	75683953	rs8070344	G	А	SEPT9	$^{++}$	1,792	1,033	759	0.214	0.119	0.231	0.204	$4.05\cdot 10^{-2}$	1.226	5.029	$4.94\cdot 10^{-7}$
8	19832646	rs17482753	Т	G	LPL	$^{++}$	1,792	1,033	759	$9.24\cdot 10^{-2}$	$5.96\cdot 10^{-2}$	$9.84\cdot 10^{-2}$	0.278	$5.63\cdot 10^{-2}$	1.32	4.933	$8.12\cdot 10^{-7}$
5	20459638	rs1472892	С	Т	CDH18	$^{++}$	1,792	1,033	759	0.775	0.769	0.807	0.178	$3.92\cdot 10^{-2}$	1.195	-4.536	$5.73\cdot 10^{-6}$
7	143701438	rs76575838	А	G	OR6B1	$^{++}$	1,792	1,033	759	$1.95\cdot 10^{-3}$	$1.81\cdot 10^{-3}$	$1.98\cdot 10^{-3}$	1.72	0.38	5.587	4.527	$5.99\cdot 10^{-6}$
3	150590168	rs1444200	С	Т	CLRN1	$^{++}$	1,792	1,033	759	0.47	0.431	0.686	0.148	$3.35\cdot 10^{-2}$	1.159	4.412	$1.02\cdot 10^{-5}$
1	151542176	rs41310883	Т	С	TUFT1	$^{++}$	1,792	1,033	759	$1.12\cdot 10^{-2}$	$1.81\cdot 10^{-3}$	$1.29\cdot 10^{-2}$	0.668	0.155	1.95	4.302	$1.69\cdot 10^{-5}$
11	117649675	rs7924993	А	G	DSCAML1	$^{++}$	1,792	1,033	759	0.864	0.855	0.913	0.207	$4.87\cdot 10^{-2}$	1.23	-4.246	$2.18\cdot 10^{-5}$
1	230398445	rs3811485	G	А	GALNT2	$^{++}$	1,792	1,033	759	0.149	0.132	0.24	0.202	$4.78\cdot 10^{-2}$	1.223	-4.221	$2.44\cdot 10^{-5}$
10	18588285	rs11013421	А	G	CACNB2	$^{++}$	1,790	1,031	759	0.211	0.167	0.219	0.171	$4.08\cdot 10^{-2}$	1.187	-4.199	$2.68\cdot 10^{-5}$
14	48293464	rs1956311	С	А	MDGA2	$^{++}$	1,792	1,033	759	0.275	0.17	0.294	0.151	$3.67\cdot 10^{-2}$	1.163	4.115	$3.88\cdot 10^{-5}$
5	99342047	rs10067427	G	А	FAM174A	$^{++}$	1,792	1,033	759	0.41	0.362	0.67	0.143	$3.47\cdot 10^{-2}$	1.153	4.114	$3.89\cdot 10^{-5}$
7	67109115	rs6952180	С	А	TYW1	$^{++}$	1,792	1,033	759	0.128	0.119	0.177	0.202	$4.9\cdot 10^{-2}$	1.223	-4.113	$3.9\cdot 10^{-5}$
13	112352992	rs9522363	т	С	TEX29	$^{++}$	1,792	1,033	759	0.262	0.254	0.305	0.157	$3.84\cdot 10^{-2}$	1.17	4.089	$4.34\cdot 10^{-5}$
7	75511299	exm627837	G	А	RHBDD2	$^{++}$	1,792	1,033	759	$5.58\cdot 10^{-4}$	$3.3\cdot 10^{-4}$	$1.81\cdot 10^{-3}$	2.881	0.705	17.825	-4.086	$4.39\cdot 10^{-5}$
9	16795790	rs16935073	С	А	BNC2	$^{++}$	1,792	1,033	759	$6.31\cdot 10^{-2}$	$4.33\cdot 10^{-2}$	$6.67\cdot 10^{-2}$	0.271	$6.72\cdot 10^{-2}$	1.312	4.034	$5.48\cdot 10^{-5}$
2	81102264	rs2131255	С	Т	CTNNA2	$^{++}$	1,792	1,033	759	0.528	0.49	0.736	0.138	$3.44\cdot 10^{-2}$	1.148	4.024	$5.73 \cdot 10^{-5}$
3	74821600	rs2049623	G	А	CNTN3	$^{++}$	1,792	1,033	759	0.513	0.507	0.543	0.134	$3.33\cdot 10^{-2}$	1.143	4.021	$5.79\cdot 10^{-5}$
11	100061865	rs11223168	А	G	CNTN5	++	1,757	1,009	748	$8.94\cdot 10^{-2}$	$8.65\cdot 10^{-2}$	0.105	0.241	$6.01\cdot 10^{-2}$	1.273	-4.014	$5.97\cdot 10^{-5}$

Figure 14: Regional plots for cohort META model invn Adjusted AGE_LIPIDS+AGE_LIPIDS2+SEX+BMI

7.4 Previously identified risk loci

Table 15 shows statistics from the META cohort for 50 loci that were shown to be significantly associated with HDL Cholesterol in the 2013 Nature Genetics paper by Willer et al [10]. Where a previously reported variant was not genotyped in the study (indicated by $\bar{R}^2 < 1$), if available, a tagging variant in LD with the reported variant ($\bar{R}^2 >= 0.7$ and within 250kb) was provided. Tags were identified using 1000 Genomes data. There

are 16 variants that show at least nominal significance (p < 0.05) in this study. Out of the 50 variants in both studies, 48 exhibit the same direction of effect with the known result (binomial test p = 1.13e - 12).

Table 15: Top known loci in META model invn Adjusted AGE_LIPIDS+AGE_LIPIDS2+SEX+BMI (**bold** variants indicate matching direction of effect)

CHR	POS	ID	EA	OA	N	FREQAVG	FREQ _{MIN}	FREQMAX	EFFECT	STDERR	Р	DIR	GENECLOSEST	R ²	ID KNOWN	NKNOWN	EFFECTKNOWN	STDERRKNOWN	PKNOWN
16	57005479	rs1532624	А	с	1.792	0.385	0.148	0.429	0.183	$3.51 \cdot 10^{-2}$	$1.82 \cdot 10^{-7}$	++	CETP	1	rs1532624	94,595	0.204	$3.5 \cdot 10^{-3}$	0
15	58678512	rs10468017	т	c	1.792	0.267	0.177	0.283	$8.13 \cdot 10^{-2}$	$3.73 \cdot 10^{-2}$	$2.94 \cdot 10^{-2}$	++	LIPC	1	rs10468017	94,595	0.118	$3.8 \cdot 10^{-3}$	$1.21 \cdot 10^{-188}$
8	19824492	rs13702	С	т	1,792	0.315	0.284	0.484	0.165	$3.63 \cdot 10^{-2}$	$5.12 \cdot 10^{-6}$	++	LPL	1	rs13702	94,595	0.106	$3.8 \cdot 10^{-3}$	$1.28 \cdot 10^{-160}$
18	47167214	rs4939883	С	т	1,792	0.794	0.594	0.831	$2.56 \cdot 10^{-2}$	$4.35 \cdot 10^{-2}$	0.555	+-	LIPG	1	rs4939883	94,595	$7.99 \cdot 10^{-2}$	$4.5 \cdot 10^{-3}$	$1.8 \cdot 10^{-66}$
9	107664301	rs1883025	С	т	1,790	0.275	0.261	0.353	0.106	$3.77\cdot 10^{-2}$	$4.73\cdot 10^{-3}$	+-	ABCA1	1	rs1883025	94,595	$6.98 \cdot 10^{-2}$	$4.1 \cdot 10^{-3}$	$1.5 \cdot 10^{-65}$
2	21231524	rs676210	А	G	1,792	0.194	0.177	0.197	$4.56\cdot 10^{-2}$	$4.21\cdot 10^{-2}$	0.279	+-	APOB	1	rs676210	94,595	$6.6 \cdot 10^{-2}$	$4 \cdot 10^{-3}$	$2.35 \cdot 10^{-54}$
16	67928042	rs16942887	А	G	1,792	0.136	0.122	0.213	0.154	$4.91 \cdot 10^{-2}$	$1.67 \cdot 10^{-3}$	$^{++}$	PSKH1	1	rs16942887	94,595	$8.31 \cdot 10^{-2}$	$5.1 \cdot 10^{-3}$	$8.28 \cdot 10^{-54}$
16	67997920	rs3785100	С	т	1,780	0.147	0.134	0.217	0.167	$4.78\cdot 10^{-2}$	$4.63\cdot 10^{-4}$	$^{++}$	SLC12A4	1	rs3785100	94,595	$7.97 \cdot 10^{-2}$	$5 \cdot 10^{-3}$	$2.22 \cdot 10^{-51}$
11	116648917	rs964184	С	G	1,792	0.839	0.803	0.846	0.115	$4.55\cdot 10^{-2}$	$1.13\cdot 10^{-2}$	$^{++}$	ZPR1	1	rs964184	94,595	-0.107	$7.1 \cdot 10^{-3}$	$6.09\cdot10^{-48}$
16	56933519	rs11643718	А	G	1,792	$9.65\cdot 10^{-2}$	$2.53\cdot 10^{-2}$	0.11	0.153	$5.75\cdot 10^{-2}$	$7.95\cdot 10^{-3}$	+-	SLC12A3	1	rs11643718	94,595	$8.22 \cdot 10^{-2}$	$5.4 \cdot 10^{-3}$	$2.98 \cdot 10^{-46}$
16	68099821	rs7201742	G	т	1,792	0.166	0.141	0.3	0.101	$4.59\cdot 10^{-2}$	$2.76\cdot 10^{-2}$	+-	DUS2	1	rs7201742	94,595	$7.36 \cdot 10^{-2}$	$4.8 \cdot 10^{-3}$	$5.13 \cdot 10^{-46}$
11	116603724	rs12272004	С	А	1,792	$8.23\cdot 10^{-2}$	$7.29\cdot 10^{-2}$	0.134	$8.8\cdot 10^{-2}$	$6.19\cdot 10^{-2}$	0.155	$^{++}$	BUD13	1	rs12272004	94,595	0.102	$7 \cdot 10^{-3}$	$1.16\cdot 10^{-45}$
8	9183596	rs4841132	G	А	1,792	0.912	0.888	0.917	$9.51\cdot 10^{-2}$	$6.01\cdot 10^{-2}$	0.114	$^{++}$	PPP1R3B	1	rs4841132	94,595	$8.16 \cdot 10^{-2}$	$5.8 \cdot 10^{-3}$	$4.83\cdot10^{-45}$
2	21123352	rs6711016	А	С	1,792	0.187	$6.68\cdot 10^{-2}$	0.209	$1.95\cdot 10^{-2}$	$4.32\cdot 10^{-2}$	0.651	+-	LDAH	1	rs6711016	94,595	$5.69 \cdot 10^{-2}$	$4 \cdot 10^{-3}$	$9.32 \cdot 10^{-43}$
16	68024995	rs255052	А	G	1,792	0.157	0.146	0.218	0.148	$4.63\cdot 10^{-2}$	$1.33\cdot 10^{-3}$	$^{++}$	DPEP2	1	rs255052	94,595	$6.8 \cdot 10^{-2}$	$4.7 \cdot 10^{-3}$	$2.17\cdot 10^{-42}$
1	230295691	rs4846914	А	G	1,792	0.53	0.143	0.601	$8.51\cdot 10^{-2}$	$3.57\cdot 10^{-2}$	$1.71\cdot 10^{-2}$	$^{++}$	GALNT2	1	rs4846914	94,595	$4.79 \cdot 10^{-2}$	$3.4 \cdot 10^{-3}$	$3.51 \cdot 10^{-41}$
16	67911517	rs8060686	С	т	1,792	0.254	0.186	0.623	$7.84 \cdot 10^{-2}$	$4.1 \cdot 10^{-2}$	$5.55\cdot 10^{-2}$	+-	EDC4	1	rs8060686	94,595	$6.3 \cdot 10^{-2}$	$4.4 \cdot 10^{-3}$	$1.32 \cdot 10^{-40}$
15	58579956	rs2899624	А	G	1,791	0.149	0.149	0.149	$5.86\cdot 10^{-2}$	$4.66\cdot 10^{-2}$	0.208	$^{++}$	ALDH1A2	1	rs2899624	94,595	$7.14 \cdot 10^{-2}$	$4.9 \cdot 10^{-3}$	$1.39 \cdot 10^{-40}$
20	44554015	rs6065906	т	С	1,792	0.177	0.171	0.179	$1.26\cdot 10^{-2}$	$4.34\cdot 10^{-2}$	0.771	+-	PCIF1	1	rs6065906	94,595	$5.94 \cdot 10^{-2}$	$4.4 \cdot 10^{-3}$	$5.34 \cdot 10^{-40}$
8	19943027	rs13265868	А	G	1,789	0.411	0.244	0.441	$9.69\cdot 10^{-2}$	$3.47\cdot 10^{-2}$	$5.21\cdot 10^{-3}$	+-	SLC18A1	1	rs13265868	94,595	$4.78 \cdot 10^{-2}$	$3.5 \cdot 10^{-3}$	$6.1 \cdot 10^{-40}$
16	67708897	rs12449157	G	А	1,792	0.239	0.171	0.614	$7.07\cdot 10^{-2}$	$4.18\cdot 10^{-2}$	$9.1\cdot 10^{-2}$	+-	GFOD2	1	rs12449157	94,595	$6.19 \cdot 10^{-2}$	$4.6 \cdot 10^{-3}$	$7.85 \cdot 10^{-37}$
11	47354787	rs1052373	т	С	1,792	0.312	0.276	0.507	$2.02\cdot 10^{-2}$	$3.71\cdot 10^{-2}$	0.587	$^{++}$	MYBPC3	1	rs1052373	94,595	$4.78 \cdot 10^{-2}$	$3.7 \cdot 10^{-3}$	$1.55 \cdot 10^{-36}$
11	47298360	rs326214	G	А	1,791	0.666	0.354	0.724	$6.11\cdot 10^{-3}$	$3.74 \cdot 10^{-2}$	0.87	$^{++}$	MADD	1	rs326214	94,595	$6.09 \cdot 10^{-2}$	$4.5 \cdot 10^{-3}$	$2.17 \cdot 10^{-36}$
20	44547068	rs17447545	А	G	1,791	0.184	0.183	0.191	$1.75 \cdot 10^{-2}$	$4.26 \cdot 10^{-2}$	0.681	+-	PLTP	1	rs17447545	94,595	$5.62 \cdot 10^{-2}$	$4.4 \cdot 10^{-3}$	$3.98 \cdot 10^{-36}$
11	116660686	rs2266788	А	G	1,791	0.929	0.92	0.982	0.148	$6.5 \cdot 10^{-2}$	$2.27\cdot 10^{-2}$	$^{++}$	APOA5	1	rs2266788	94,595	$9.22 \cdot 10^{-2}$	$6.8 \cdot 10^{-3}$	$1.19 \cdot 10^{-35}$
18	47243912	rs6507945	С	А	1,792	0.608	0.581	0.758	$6.8 \cdot 10^{-2}$	$3.53 \cdot 10^{-2}$	$5.43 \cdot 10^{-2}$	$^{++}$	ACAA2	1	rs6507945	94,595	$4.41 \cdot 10^{-2}$	$3.4 \cdot 10^{-3}$	$1.33 \cdot 10^{-34}$
20	43042364	rs1800961	С	т	1,792	$2.65 \cdot 10^{-2}$	$5.42 \cdot 10^{-3}$	$3.04 \cdot 10^{-2}$	0.258	0.104	$1.34 \cdot 10^{-2}$	+-	HNF4A	1	rs1800961	94,595	0.127	$9.9 \cdot 10^{-3}$	$1.64 \cdot 10^{-34}$
16	56772157	rs7184359	т	С	1,789	0.296	0.284	0.364	$3.4 \cdot 10^{-2}$	$3.71 \cdot 10^{-2}$	0.36	$^{++}$	NUP93	1	rs7184359	94,595	$-4.96 \cdot 10^{-2}$	$3.8 \cdot 10^{-3}$	$2.78 \cdot 10^{-34}$
11	47275064	rs10838681	A	G	1,792	0.26	0.224	0.457	$5.86 \cdot 10^{-2}$	$3.93 \cdot 10^{-2}$	0.136	$^{++}$	NR1H3	1	rs10838681	94,595	$4.8 \cdot 10^{-2}$	$3.8 \cdot 10^{-3}$	$1.72 \cdot 10^{-33}$
16	67964203	rs1134760	С	т	1,792	0.227	0.184	0.458	$6.46 \cdot 10^{-2}$	$4.12 \cdot 10^{-2}$	0.116	+-	CTRL	1	rs1134760	94,595	$6.79 \cdot 10^{-2}$	$5.3 \cdot 10^{-3}$	$2.82 \cdot 10^{-33}$
11	47249294	rs2957873	G	A	1,792	0.793	0.551	0.837	$6.82 \cdot 10^{-2}$	$4.3 \cdot 10^{-2}$	0.113	++	DDB2	1	rs2957873	94,595	$5.21 \cdot 10^{-2}$	$4.2 \cdot 10^{-3}$	$1.81 \cdot 10^{-32}$
12	125261593	rs838880	C	Т	1,792	0.633	0.319	0.69	$3.56 \cdot 10^{-2}$	$3.53 \cdot 10^{-2}$	0.313	++	SCARB1	1	rs838880	94,595	$4.84 \cdot 10^{-2}$	$3.9 \cdot 10^{-3}$	$6.38 \cdot 10^{-32}$
16	67902070	rs22/1293	A	G	1,792	0.11	$7.4 \cdot 10^{-2}$	0.116	0.141	$5.32 \cdot 10^{-2}$	8 · 10 ⁻³	++	NUTF2	1	rs2271293	94,595	$8.7 \cdot 10^{-2}$	$7.2 \cdot 10^{-3}$	$6.16 \cdot 10^{-31}$
19	54797848	rs103294	Т	С	1,792	0.179	0.103	0.193	0.107	$4.41 \cdot 10^{-2}$	$1.57 \cdot 10^{-2}$	+-	LILRB2	1	rs103294	94,595	$5.23 \cdot 10^{-2}$	$4.4 \cdot 10^{-3}$	$4 \cdot 10^{-30}$
8	126495818	rs10808540	Т	C	1,792	0.396	0.37	0.401	$3.66 \cdot 10^{-2}$	$3.48 \cdot 10^{-2}$	0.292	+-	TRIB1	1	rs10808546	94,595	$4.09 \cdot 10^{-2}$	$3.4 \cdot 10^{-3}$	$4.11 \cdot 10^{-30}$
11	46/4324/	rs3130441	C	1	1,792	0.103	3.79 · 10	0.115	6.91 · 10	5.51 · 10	0.21	+-	F2	1	rs3136441	94,595	$5.45 \cdot 10^{-2}$	$4.7 \cdot 10^{-3}$	6.76 · 10 ⁻²³
11	4/2/0255	rs210/0/9	1	C	1,789	0.303	0.254	0.576	3.91 · 10 -	3.82 · 10 -	0.306	++	ACP2	1	rs2167079	94,595	5.77 · 10 =	$4.8 \cdot 10^{-3}$	1.19 · 10 =-
16	67671804	rs0499137	G		1,792	0.112	7.82 · 10	0.3	$4.46 \cdot 10^{-2}$	$5.39 \cdot 10^{-2}$	0.408	+-	CICF	1	rsb499137	94,595	$7.22 \cdot 10^{-2}$	$6.2 \cdot 10^{-3}$	$5.9 \cdot 10^{-20}$
11	01557803	15102275	1	C T	1,792	0.394	0.348	0.646	1.99 · 10 -	3.48 · 10 -	0.568	++	I MEM258	1	rs102275	94,595	3.91 · 10 -	$3.5 \cdot 10^{-3}$	$6.4 \cdot 10^{-28}$
11	01509830	15174540	с т	1	1,792	0.297	9.21 - 10 -	0.334	1.33 · 10 -	3.67 · 10 -	0.717	++	FADSI	1	rs1/4546	94,595	3.91 · 10 -	$3.5 \cdot 10^{-3}$	8.3 · 10
11	01551350	15174333		c	1,792	0.319	0.204	0.34	3.44 · 10	3.57 · 10 -	0.335	++	MYRF	1	rs1/4535	94,595	$3.92 \cdot 10^{-2}$	$3.5 \cdot 10^{-3}$	9.04 · 10 ===
11	15206024	rs1333 rc643531	A	G	1,784	0.307	0.139	0.338	7.86 10-2	5.14 10-2	0.669	++	FADS2	1	r\$1535	94,595	3.91 · 10 -2	$3.6 \cdot 10^{-3}$	$5.74 \cdot 10^{-26}$
9	15290034	15045551	A	c	1,792	0.877	0.869	0.924	7.80 · 10	5.14 · 10	0.120	++	TOLAN	1	15045551	94,595	5.44 · 10	4.9 • 10	4.55 10
19	45395019	18207 3030	A	G	1,792	0.125	0.112	0.127	$9.06 \cdot 10$ 0.00 10^{-2}	$5.05 \cdot 10$	7.28 · 10	+-	TOMM40	1	rs2075050	94,595	$5.54 \cdot 10$	$5.1 \cdot 10^{-3}$	$9.72 \cdot 10$ $9.44 \cdot 10^{-25}$
11	4/04000/	re23060324	ر ۸	Ċ	1,792	0.62 10-2	0.404 2 70 10 ⁻²	0.875	2.22 · 10 -	4.03 · 10 -2	0.055 7 10 10 ⁻²	+-		1	159000924	94,595	5.19 · 10 -2	4.7 · 10	2.44 · 10 25
11	+009/440	re2210022	A C	4	1,792	9.03 · 10 -	0.120	0.107	7 77 10 ⁻²	$4.75 10^{-2}$	0.102	+-		1	rs2300033	94,595	$3.33 \cdot 10^{-2}$	5 · 10 ·	3.33 · 10 25
10	50909148 67706215	re8051587	c	A	1,792	0.148	0.152	0.151	$7.42 \cdot 10^{-2}$	4.15 10 ⁻²	7 26 10-2	+-	DANDD10	1	15221/332	94,595	6.82 10-2	6.4 10-3	3.34 · 10
10	47454701	rs10742805	د ۵	G	1,792	0.242	0.174	0.010	7.45 · 10 = 8.01 · 10=3	4.10 · 10 - 3.8 · 10-2	0.833	+-	RANDP10	1	150U0100/	94,595	$0.82 \cdot 10^{-2}$ 3.05 · 10 ⁻²	3.7.10-3	$3.47 \cdot 10^{-24}$
11	47440544	rs7105122	т	c	1,789	0.094	0.412	0.740	$1.68 \cdot 10^{-2}$	3.83.10 ⁻²	0.661		DSMC3	1	re7105122	94,090	$3.93 \cdot 10$ $3.94 \cdot 10^{-2}$	$3.7 \cdot 10^{-3}$	$4.69 \cdot 10^{-24}$
11		.51105122		<u> </u>	1,100	0.210	0.200	0.42	1.00 . 10	0.00 . 10	0.001	TT	1 514105		.3/103122	34,000	3.34 . 10	0.1 - 10	1.00 . 10

8 LDL Cholesterol (LDL_DIRECT)

8.1 Summary

Figure 15: Distribution of LDL_DIRECT in META by cohort

Table 16: Samples with LDL Cholesterol data summarized by cohort, transformation, and run-time adjustments

Cohort	Array	Ancestry	Trans	Covars	PCs	Ν	Male	Female	Max	Min	μ	$ ilde{x}$	σ
META AFR	EX	AFR	invn	AGE_LIPIDS+AGE_LIPIDS2+SEX+BMI	0	279	139	140	253.0	39.0	106.423	102.0	35.296
META EUR	EX	EUR	invn	$AGE_LIPIDS{+}AGE_LIPIDS2{+}SEX{+}BMI$	0	1515	894	621	234.0	10.0	100.766	97.0	32.096

8.2 Calibration

(a) invn Adjusted AGE_LIPIDS+AGE_LIPIDS2+SEX+BMI

Figure 16: QQ plots for LDL_DIRECT in the META analysis

(a) invn Adjusted AGE_LIPIDS+AGE_LIPIDS2+SEX+BMI

Figure 17: Manhattan plots for LDL_DIRECT in the META analysis

8.3 Top associations

Table 17: Top variants ir	ı the META invı	n Adjusted AGE_	_LIPIDS+AGE_	_LIPIDS2+SEX+BMI	l model (bold
variants indicate previously	y identified assoc	ciations)			

CHR	POS	ID	EA	OA	GENECLOSEST	DIR	Ν	MALE	FEMALE	FREQAVG	FREQ _{MIN}	FREQ _{MAX}	EFFECT	STDERR	OR	ZSCORE	Р
19	45412079	rs7412	С	т	APOE	++	1,785	1,029	756	$7.73\cdot 10^{-2}$	$7.04\cdot 10^{-2}$	0.115	0.513	$6.12\cdot 10^{-2}$	1.671	-8.394	$4.69\cdot 10^{-17}$
19	45415640	rs445925	G	А	APOC1	$^{++}$	1,794	1,033	761	0.127	$9.97\cdot 10^{-2}$	0.274	0.306	$5.11\cdot 10^{-2}$	1.358	-5.993	$2.07\cdot 10^{-9}$
13	77782296	rs2329029	т	G	MYCBP2	$^{++}$	1,794	1,033	761	0.781	0.509	0.831	0.207	$4.13\cdot 10^{-2}$	1.23	-5.012	$5.4\cdot 10^{-7}$
1	152457624	rs1199153	G	А	LCE5A	$^{++}$	1,794	1,033	761	0.11	$2.48\cdot 10^{-2}$	0.57	0.328	$6.81\cdot 10^{-2}$	1.388	-4.816	$1.46\cdot 10^{-6}$
11	61026713	rs142603933	G	А	VWCE	$^{++}$	1,794	1,033	761	$1.39\cdot 10^{-3}$	$3.3\cdot 10^{-4}$	$7.17\cdot 10^{-3}$	1.975	0.44	7.206	-4.489	$7.15\cdot 10^{-6}$
10	102631263	rs10883549	А	G	SLF2	$^{++}$	1,794	1,033	761	0.301	0.233	0.314	0.162	$3.68 \cdot 10^{-2}$	1.176	-4.407	$1.05 \cdot 10^{-5}$
9	75469679	rs72734808	С	Т	TMC1	$^{++}$	1,794	1,033	761	0.127	0.126	0.133	0.219	$5.03\cdot 10^{-2}$	1.245	-4.359	$1.31\cdot 10^{-5}$
3	10830031	rs1601365	Т	С	SLC6A11	$^{++}$	1,794	1,033	761	0.439	0.362	0.453	0.139	$3.33 \cdot 10^{-2}$	1.15	-4.186	$2.84 \cdot 10^{-5}$
22	23463183	rs756631	G	А	GNAZ	$^{++}$	1,794	1,033	761	0.514	0.303	0.552	0.141	$3.38\cdot 10^{-2}$	1.152	4.185	$2.86\cdot 10^{-5}$
6	24060381	rs1277145	G	А	NRSN1	$^{++}$	1,794	1,033	761	0.855	0.762	0.872	0.199	$4.78\cdot 10^{-2}$	1.22	4.161	$3.17 \cdot 10^{-5}$
9	136723520	rs12344583	G	А	VAV2	$^{++}$	1,794	1,033	761	0.246	0.198	0.507	0.163	$4.03\cdot 10^{-2}$	1.177	4.054	$5.04\cdot 10^{-5}$
13	80654666	rs17072271	А	G	SPRY2	$^{++}$	1,783	1,029	754	0.24	0.231	0.286	0.157	$3.9 \cdot 10^{-2}$	1.17	-4.017	$5.9 \cdot 10^{-5}$
16	30004800	rs35431046	А	G	HIRIP3	$^{++}$	1,793	1,033	760	$6.97\cdot 10^{-3}$	$3.3\cdot 10^{-4}$	$4.32\cdot 10^{-2}$	0.796	0.198	2.216	4.009	$6.09\cdot 10^{-5}$
19	4517649	rs201988075	Т	С	PLIN4	$^{++}$	1,794	1,033	761	$2.23\cdot 10^{-3}$	$3.3\cdot 10^{-4}$	$1.25\cdot 10^{-2}$	1.415	0.355	4.116	-3.981	$6.87\cdot 10^{-5}$
1	242404260	rs425246	С	Т	PLD5	$^{++}$	1,794	1,033	761	$9.67\cdot 10^{-2}$	$5.78\cdot 10^{-2}$	0.308	0.235	$5.91\cdot 10^{-2}$	1.265	-3.98	$6.88\cdot 10^{-5}$
19	14375895	rs7248277	Т	С	ADGRL1	$^{++}$	1,794	1,033	761	0.384	0.383	0.391	0.135	$3.39\cdot 10^{-2}$	1.144	3.978	$6.97\cdot 10^{-5}$
14	63811438	rs10134021	А	G	GPHB5	$^{++}$	1,794	1,033	761	$8.97\cdot 10^{-2}$	$2.18\cdot 10^{-2}$	0.459	0.279	$7.06\cdot 10^{-2}$	1.322	-3.954	$7.68\cdot 10^{-5}$
1	11468442	rs11121728	С	т	DISP3	$^{++}$	1,794	1,033	761	0.406	0.328	0.421	0.131	$3.34\cdot 10^{-2}$	1.14	3.934	$8.37\cdot 10^{-5}$
18	31324934	rs7232237	А	G	ASXL3	$^{++}$	1,794	1,033	761	0.532	0.496	0.726	0.132	$3.37\cdot 10^{-2}$	1.141	-3.922	$8.78\cdot 10^{-5}$
12	80771813	rs2717477	А	G	OTOGL	++	1,763	1,017	746	0.783	0.498	0.837	0.17	$4.34\cdot 10^{-2}$	1.185	3.919	$8.89\cdot 10^{-5}$

Figure 18: Regional plot for cohort META model invn Adjusted AGE_LIPIDS+AGE_LIPIDS2+SEX+BMI: rs7412 $\pm 100kb$

8.4 Previously identified risk loci

Table 18 shows statistics from the META cohort for 50 loci that were shown to be significantly associated with LDL Cholesterol in the 2013 Nature Genetics paper by Willer et al [12]. Where a previously reported variant was not genotyped in the study (indicated by $\bar{R}^2 < 1$), if available, a tagging variant in LD with the reported variant $(\bar{R}^2 >= 0.7 \text{ and within } 250 \text{kb})$ was provided. Tags were identified using 1000 Genomes data. There are 10

variants that show at least nominal significance (p < 0.05) in this study. Out of the 50 variants in both studies, 32 exhibit the same direction of effect with the known result (binomial test p = 0.0325).

Table 18: Top known loci in META model invn Adjusted AGE_LIPIDS+AGE_LIPIDS2+SEX+BMI (**bold** variants indicate matching direction of effect)

CHR	POS	ID	EA	OA	N	FREQAVG	FREQ _{MIN}	FREQMAX	EFFECT	STDERR	Р	DIR	GENECLOSEST	R ²	IDKNOWN	NKNOWN	EFFECTKNOWN	STDERRKNOWN	PKNOWN
19	45415640	rs445925	G	А	1,794	0.127	$9.97 \cdot 10^{-2}$	0.274	0.306	$5.11 \cdot 10^{-2}$	$2.07 \cdot 10^{-9}$	++	APOC1	1	rs445925	94,595	0.363	$8.1 \cdot 10^{-3}$	0
19	45412079	rs7412	С	т	1,785	$7.73 \cdot 10^{-2}$	$7.04\cdot 10^{-2}$	0.115	0.513	$6.12\cdot 10^{-2}$	$4.69 \cdot 10^{-17}$	++	APOE	1	rs7412	94,595	0.59	$1.01 \cdot 10^{-2}$	0
1	109818530	rs646776	т	С	1,794	0.78	0.668	0.8	$5.38\cdot 10^{-2}$	$4.01\cdot 10^{-2}$	0.18	$^{++}$	CELSR2	1	rs646776	94,595	0.16	$4.4\cdot 10^{-3}$	$1.63 \cdot 10^{-272}$
1	109822166	rs599839	А	G	1,794	0.712	0.278	0.792	$3.68\cdot 10^{-2}$	$4.01\cdot 10^{-2}$	0.359	$^{++}$	PSRC1	1	rs599839	94,595	0.16	$4.4\cdot 10^{-3}$	$2.75 \cdot 10^{-268}$
19	11202306	rs6511720	G	т	1,794	0.119	0.118	0.122	0.125	$5.1\cdot 10^{-2}$	$1.46\cdot 10^{-2}$	$^{++}$	LDLR	1	rs6511720	94,595	0.221	$6.1 \cdot 10^{-3}$	$3.85 \cdot 10^{-262}$
19	45395619	rs2075650	G	А	1,794	0.125	0.113	0.127	0.144	$5.02\cdot 10^{-2}$	$4.27\cdot 10^{-3}$	+-	TOMM40	1	rs2075650	94,595	0.177	$5.5 \cdot 10^{-3}$	$1.72 \cdot 10^{-214}$
2	21263900	rs1367117	А	G	1,794	0.28	0.109	0.312	$6.2\cdot 10^{-2}$	$3.75\cdot 10^{-2}$	$9.81\cdot 10^{-2}$	$^{++}$	APOB	1	rs1367117	94,595	0.119	$4 \cdot 10^{-3}$	$9.48 \cdot 10^{-183}$
1	55505647	rs11591147	G	т	1,794	$1.14\cdot 10^{-2}$	$3.58\cdot 10^{-3}$	$1.29\cdot 10^{-2}$	0.14	0.159	0.379	$^{++}$	PCSK9	1	rs11591147	94,595	0.497	$1.8 \cdot 10^{-2}$	$8.58 \cdot 10^{-143}$
2	21383717	rs4560142	Т	С	1,794	0.758	0.631	0.782	$4.86\cdot 10^{-2}$	$3.98\cdot 10^{-2}$	0.222	$^{++}$	TDRD15	1	rs4560142	94,595	0.109	$4.5 \cdot 10^{-3}$	$7.52 \cdot 10^{-126}$
19	45333834	rs4803760	С	т	1,784	0.842	0.823	0.942	$5.69\cdot 10^{-2}$	$4.58\cdot 10^{-2}$	0.214	+-	BCAM	1	rs4803760	94,595	0.119	$4.9 \cdot 10^{-3}$	$2.47 \cdot 10^{-123}$
19	45382034	rs6859	А	G	1,784	0.578	0.547	0.584	$7.72\cdot 10^{-3}$	$3.46\cdot 10^{-2}$	0.823	+-	NECTIN2	1	rs6859	94,595	$8.35 \cdot 10^{-2}$	$3.9 \cdot 10^{-3}$	$4.65\cdot 10^{-88}$
2	44073881	rs6544713	т	С	1,794	0.715	0.692	0.841	$4.56\cdot 10^{-2}$	$3.74\cdot 10^{-2}$	0.222	$^{++}$	ABCG8	1	rs6544713	94,595	$8.06 \cdot 10^{-2}$	$4.1 \cdot 10^{-3}$	$4.84 \cdot 10^{-83}$
5	74656539	rs12916	С	т	1,794	0.372	0.244	0.396	$6.72\cdot 10^{-2}$	$3.51\cdot 10^{-2}$	$5.59 \cdot 10^{-2}$	$^{++}$	HMGCR	1	rs12916	94,595	$7.33 \cdot 10^{-2}$	$3.8 \cdot 10^{-3}$	$7.79 \cdot 10^{-78}$
5	74757556	rs4704220	А	G	1,794	0.452	0.384	0.821	$5.44\cdot 10^{-2}$	$3.58 \cdot 10^{-2}$	0.128	$^{++}$	COL4A3BP	1	rs4704220	94,595	$6.39 \cdot 10^{-2}$	$3.7 \cdot 10^{-3}$	$5.13 \cdot 10^{-62}$
5	74574984	rs2126736	G	А	1,791	0.451	0.419	0.625	$6.04\cdot 10^{-2}$	$3.47\cdot 10^{-2}$	$8.19 \cdot 10^{-2}$	$^{++}$	ANKRD31	1	rs2126736	94,595	$6.42 \cdot 10^{-2}$	$3.7 \cdot 10^{-3}$	$2.62 \cdot 10^{-61}$
19	45237812	rs2965101	т	С	1,791	0.355	0.344	0.41	$2.45\cdot 10^{-4}$	$3.47\cdot 10^{-2}$	0.994	+-	BCL3	1	rs2965101	94,595	$6.68 \cdot 10^{-2}$	$4 \cdot 10^{-3}$	$1.07 \cdot 10^{-60}$
19	11163601	rs1122608	G	т	1,794	0.217	$5.73\cdot 10^{-2}$	0.246	$5.65\cdot 10^{-2}$	$4.07\cdot 10^{-2}$	0.164	+-	SMARCA4	1	rs1122608	94,595	$7.4 \cdot 10^{-2}$	$4.5 \cdot 10^{-3}$	$8.5 \cdot 10^{-57}$
19	45296806	rs3208856	С	т	1,794	$3.01\cdot 10^{-2}$	$2.77\cdot 10^{-2}$	$4.3 \cdot 10^{-2}$	$6.17\cdot 10^{-2}$	$9.78\cdot 10^{-2}$	0.528	+-	CBLC	1	rs3208856	94,595	0.295	$1.91 \cdot 10^{-2}$	$4.03 \cdot 10^{-56}$
19	19407718	rs10401969	С	т	1,794	$7.94\cdot 10^{-2}$	$6.47\cdot 10^{-2}$	0.16	$1.02\cdot 10^{-2}$	$6.2 \cdot 10^{-2}$	0.869	+-	SUGP1	1	rs10401969	94,595	-0.118	$7.2 \cdot 10^{-3}$	$2.65 \cdot 10^{-54}$
2	44065090	rs6756629	G	А	1,794	$6.91\cdot 10^{-2}$	$6.77\cdot 10^{-2}$	$7.71\cdot 10^{-2}$	$8.07\cdot 10^{-3}$	$6.63\cdot 10^{-2}$	0.903	+-	ABCG5	1	rs6756629	94,595	0.131	$8.8 \cdot 10^{-3}$	$1.29 \cdot 10^{-49}$
19	19658472	rs16996148	т	G	1,794	$8.03\cdot 10^{-2}$	$6.53\cdot 10^{-2}$	0.161	$4.72\cdot 10^{-2}$	$6.13\cdot 10^{-2}$	0.441	$^{++}$	CILP2	1	rs16996148	94,595	$-9.86 \cdot 10^{-2}$	$6.7 \cdot 10^{-3}$	$1.97 \cdot 10^{-45}$
8	126495818	rs10808546	С	т	1,794	0.396	0.371	0.401	$2.67\cdot 10^{-3}$	$3.47\cdot 10^{-2}$	0.939	-+	TRIB1	1	rs10808546	94,595	$5.36 \cdot 10^{-2}$	$3.7 \cdot 10^{-3}$	$1.51\cdot 10^{-44}$
9	136154168	rs579459	т	С	1,794	0.193	0.149	0.201	$5.2 \cdot 10^{-2}$	$4.22 \cdot 10^{-2}$	0.218	++	ABO	1	rs579459	94,595	$-6.65 \cdot 10^{-2}$	$4.5 \cdot 10^{-3}$	$2.42 \cdot 10^{-44}$
19	19329924	rs2228603	т	С	1,794	$5.41\cdot 10^{-2}$	$1.61\cdot 10^{-2}$	$6.11\cdot 10^{-2}$	$9.59\cdot 10^{-2}$	$7.29\cdot 10^{-2}$	0.188	$^{++}$	NCAN	1	rs2228603	94,595	-0.104	$7.2 \cdot 10^{-3}$	$4.43\cdot 10^{-44}$
16	72108093	rs2000999	А	G	1,792	0.196	$5.04\cdot 10^{-2}$	0.222	$2.62\cdot 10^{-2}$	$4.27\cdot 10^{-2}$	0.539	$^{++}$	HPR	1	rs2000999	94,595	$6.5 \cdot 10^{-2}$	$4.6 \cdot 10^{-3}$	$4.22\cdot 10^{-41}$
11	61609750	rs174583	Т	С	1,794	0.337	0.262	0.351	$9.91\cdot 10^{-2}$	$3.51\cdot 10^{-2}$	$4.73\cdot 10^{-3}$	$^{++}$	FADS2	1	rs174583	94,595	$-5.22 \cdot 10^{-2}$	$3.8\cdot10^{-3}$	$7 \cdot 10^{-41}$
11	61571478	rs174550	С	т	1,794	0.296	$9.14\cdot 10^{-2}$	0.334	0.104	$3.65 \cdot 10^{-2}$	$4.43 \cdot 10^{-3}$	+-	FADS1	1	rs174550	94,595	$-5.14 \cdot 10^{-2}$	$3.8 \cdot 10^{-3}$	$7.03 \cdot 10^{-40}$
11	61557803	rs102275	С	т	1,794	0.394	0.348	0.645	$8.53\cdot 10^{-2}$	$3.48\cdot 10^{-2}$	$1.41\cdot 10^{-2}$	+-	TMEM258	1	rs102275	94,595	$-5.12 \cdot 10^{-2}$	$3.8\cdot10^{-3}$	$7.61 \cdot 10^{-40}$
1	55713628	rs4927207	G	А	1,793	0.154	0.131	0.158	$2.46\cdot 10^{-2}$	$4.61\cdot 10^{-2}$	0.595	+-	USP24	1	rs4927207	94,595	$6.92 \cdot 10^{-2}$	$4.9\cdot 10^{-3}$	$2.36 \cdot 10^{-39}$
11	61551356	rs174535	С	т	1,794	0.318	0.203	0.34	$9.21\cdot 10^{-2}$	$3.56\cdot 10^{-2}$	$9.64 \cdot 10^{-3}$	+-	MYRF	1	rs174535	94,595	$-5.04 \cdot 10^{-2}$	$3.8\cdot10^{-3}$	$1.75\cdot 10^{-38}$
19	19379549	rs58542926	т	С	1,794	$6.02\cdot 10^{-2}$	$3.41\cdot 10^{-2}$	$6.5 \cdot 10^{-2}$	$4.15\cdot 10^{-2}$	$6.97\cdot 10^{-2}$	0.551	$^{++}$	TM6SF2	1	rs58542926	94,595	-0.128	$9.5 \cdot 10^{-3}$	$1.96\cdot 10^{-38}$
16	56989590	rs247616	С	т	1,793	0.299	0.249	0.308	$2.02\cdot 10^{-2}$	$3.72\cdot 10^{-2}$	0.588	+-	CETP	1	rs247616	94,595	$5.47 \cdot 10^{-2}$	$4.1\cdot 10^{-3}$	$2.57 \cdot 10^{-37}$
2	21123352	rs6711016	С	А	1,794	0.186	$6.63\cdot 10^{-2}$	0.209	$7.39\cdot 10^{-2}$	$4.33\cdot 10^{-2}$	$8.76 \cdot 10^{-2}$	+-	LDAH	1	rs6711016	94,595	$5.51 \cdot 10^{-2}$	$4.3 \cdot 10^{-3}$	$1.1 \cdot 10^{-35}$
1	109838918	rs629001	С	т	1,794	0.903	0.724	0.936	$1.68\cdot 10^{-2}$	$5.98\cdot 10^{-2}$	0.78	$^{++}$	MYBPHL	1	rs629001	94,595	-0.1	$7.9\cdot 10^{-3}$	$2.28\cdot 10^{-35}$
19	19531910	rs11668386	G	А	1,794	$9.31\cdot 10^{-2}$	$3.58\cdot 10^{-2}$	0.104	$3.42\cdot 10^{-2}$	$5.69\cdot 10^{-2}$	0.548	$^{++}$	GATAD2A	1	rs11668386	94,595	$-7.23 \cdot 10^{-2}$	$5.6 \cdot 10^{-3}$	$3.14\cdot 10^{-35}$
11	61560081	rs174538	А	G	1,794	0.266	$7.71 \cdot 10^{-2}$	0.301	0.115	$3.78 \cdot 10^{-2}$	$2.31 \cdot 10^{-3}$	+-	FEN1	1	rs174538	94,595	$-5 \cdot 10^{-2}$	$4 \cdot 10^{-3}$	$1.07 \cdot 10^{-34}$
5	74967386	rs40060	С	т	1,794	0.641	0.557	0.656	$5.74\cdot 10^{-2}$	$3.56\cdot 10^{-2}$	0.106	$^{++}$	ANKDD1B	1	rs40060	94,595	$4.74 \cdot 10^{-2}$	$3.8 \cdot 10^{-3}$	$5.95\cdot10^{-34}$
1	63133930	rs4587594	G	А	1,794	0.35	0.334	0.441	$5.82\cdot 10^{-2}$	$3.49\cdot 10^{-2}$	$9.55\cdot 10^{-2}$	$^{++}$	DOCK7	1	rs4587594	94,595	$4.93 \cdot 10^{-2}$	$3.9\cdot10^{-3}$	$1.63 \cdot 10^{-32}$
19	19789528	rs2304130	А	G	1,794	$8.78\cdot 10^{-2}$	$7.1\cdot 10^{-2}$	0.179	$1.06\cdot 10^{-2}$	$5.95\cdot 10^{-2}$	0.859	+-	ZNF101	1	rs2304130	94,595	$8.85 \cdot 10^{-2}$	$7.2 \cdot 10^{-3}$	$2.24 \cdot 10^{-32}$
5	156390297	rs6882076	С	т	1,780	0.592	0.368	0.633	$2.27\cdot 10^{-3}$	$3.56\cdot 10^{-2}$	0.949	-+	TIMD4	1	rs6882076	94,595	$4.56 \cdot 10^{-2}$	$3.8 \cdot 10^{-3}$	$3.31 \cdot 10^{-31}$
19	10916684	rs2287029	т	С	1,794	0.157	$4.3 \cdot 10^{-2}$	0.178	$3.59\cdot 10^{-2}$	$4.66\cdot 10^{-2}$	0.44	+-	DNM2	1	rs2287029	94,595	$-8.28 \cdot 10^{-2}$	$6.8\cdot10^{-3}$	$8.05 \cdot 10^{-31}$
19	11275139	rs7188	С	А	1,793	0.299	$6.3 \cdot 10^{-2}$	0.342	$5.63\cdot 10^{-3}$	$3.78\cdot 10^{-2}$	0.882	+-	KANK2	1	rs7188	94,595	$5.21 \cdot 10^{-2}$	$4.3 \cdot 10^{-3}$	$9.39\cdot10^{-31}$
5	75015242	rs2112347	G	т	1,794	0.38	0.358	0.495	$5.31\cdot 10^{-2}$	$3.57\cdot 10^{-2}$	0.137	$^{++}$	POC5	1	rs2112347	94,595	$4.43 \cdot 10^{-2}$	$3.8\cdot10^{-3}$	$4.43\cdot 10^{-30}$
19	11256285	rs4804147	А	G	1,794	0.395	$7.53\cdot 10^{-2}$	0.454	$3.85\cdot 10^{-3}$	$3.61\cdot 10^{-2}$	0.915	$^{++}$	SPC24	1	rs4804147	94,595	$-4.35 \cdot 10^{-2}$	$3.8 \cdot 10^{-3}$	$5.31 \cdot 10^{-29}$
19	10728030	rs8106664	G	т	1,794	0.799	0.789	0.853	$8.49\cdot 10^{-2}$	$4.25\cdot 10^{-2}$	$4.58\cdot 10^{-2}$	$^{++}$	SLC44A2	1	rs8106664	94,595	$-5.3 \cdot 10^{-2}$	$4.6 \cdot 10^{-3}$	$1.5 \cdot 10^{-27}$
11	116648917	rs964184	G	С	1,794	0.838	0.797	0.846	$5.42\cdot 10^{-2}$	$4.54\cdot 10^{-2}$	0.232	+-	ZPR1	1	rs964184	94,595	$-8.55\cdot10^{-2}$	$7.8\cdot 10^{-3}$	$2.01\cdot 10^{-26}$
20	39797465	rs753381	т	С	1,794	0.604	0.548	0.907	$1.76\cdot 10^{-2}$	$3.54\cdot 10^{-2}$	0.619	$^{++}$	PLCG1	1	rs753381	94,595	$-3.81\cdot10^{-2}$	$3.7\cdot 10^{-3}$	$3.57\cdot 10^{-25}$
8	9183358	rs9987289	А	G	1,794	0.901	0.819	0.916	$9.19\cdot 10^{-3}$	$5.72\cdot 10^{-2}$	0.872	+-	PPP1R3B	1	rs9987289	94,595	$-7.14\cdot10^{-2}$	$6.6\cdot10^{-3}$	$8.53\cdot 10^{-24}$
11	116639104	rs10790162	А	G	1,794	0.929	0.919	0.984	$8.58\cdot 10^{-2}$	$6.52\cdot 10^{-2}$	0.188	$^{++}$	BUD13	1	rs10790162	94,595	$7.6 \cdot 10^{-2}$	$7.2 \cdot 10^{-3}$	$1.09\cdot 10^{-23}$
1	109784781	rs586254	А	G	1,793	0.558	0.54	0.654	$6.33\cdot 10^{-2}$	$3.34\cdot 10^{-2}$	$5.8\cdot 10^{-2}$	$^{++}$	SARS	1	rs586254	94,595	$5.58\cdot10^{-2}$	$5.4\cdot 10^{-3}$	$2.5 \cdot 10^{-23}$

9 Acknowledgements

We would like to acknowledge the following people for their significant contributions to this work.

Ryan Koesterer Maria Costanzo Lizz Caulkins Noel Burtt Jason Flannick Miriam Udler Alisa Manning Jose Florez

10 References

- [1] Plink1.9, https://www.cog-genomics.org/plink2.
- [2] Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human genome browser at UCSC. Genome Res. 2002 Jun;12(6):996-1006. LiftOver http://hgdownload.soe.ucsc.edu/ admin/exe/linux.x86_64/liftOver.
- [3] Conomos MP. GENetic EStimation and Inference in Structured samples (GENESIS): Statistical methods for analyzing genetic data from samples with population structure and/or relatedness, https://www. rdocumentation.org/packages/GENESIS/versions/2.2.2.
- [4] http://people.virginia.edu/~wc9c/KING/.
- [5] 1000 Genomes Phase 3 v5, https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html.
- [6] Seed C, Bloemendal A, Bloom JM, Goldstein JI, King D, Poterba T, Neale BM. Hail: An Open-Source Framework for Scalable Genetic Data Analysis. In preparation. https://github.com/hail-is/hail.
- [7] Morris A, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012 Sep; 44(9): 981-990. Published online 2012 Aug 12. doi: 10.1038/ng.2383
- [8] Scott RA, et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet. 2012 Sep;44(9):991-1005. doi: 10.1038/ng.2385. Epub 2012 Aug 12
- [9] Ehret G, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011 Oct; 478: 103-109. doi:10.1038/nature10405
- [10] Willer C, et al. Discovery and Refinement of Loci Associated with Lipid Levels. Nature Genetics. 2013 Nov; 45(11): 1274-1283. doi:10.1038/ng.2797
- [11] Locke A, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015 Feb; 518(7538): 197-206. doi:10.1038/nature14177
- [12] Willer C, et al. Discovery and Refinement of Loci Associated with Lipid Levels. Nature Genetics. 2013 Nov; 45(11): 1274-1283. doi:10.1038/ng.2797
- [13] Scott RA, et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet. 2012 Sep;44(9):991-1005. doi: 10.1038/ng.2385. Epub 2012 Aug 12

- [14] Soranzo N, et al. Common variants at 10 genomic loci influence hemoglobin A1(C) levels via glycemic and nonglycemic pathways. Diabetes. 2010 Dec;59(12):3229-39. doi: 10.2337/db10-0502. Epub 2010 Sep 21
- [15] Ehret G, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011 Oct; 478: 103-109. doi:10.1038/nature10405
- [16] Gilbert C, Ruebenacker O, Koesterer R, Massung J, Flannick J. Loamstream. loamstream 1.4-SNAPSHOT (1.3-202-g7df4815) branch: master commit: 7df4815aa4da7f1845e3e40f931c11fda358c6af built on: 2019-04-10T18:38:22.667Z. https://github.com/broadinstitute/dig-loam-stream.
- [17] Koesterer R, Gilbert C, Ruebenacker O, Massung J, Flannick J. AMP-DCC Data Analysis Pipeline. digloam-2.5.6. https://github.com/broadinstitute/dig-loam.