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Introduction

1 Introduction

This document contains details of our in-house quality control procedure and its application to the NUS dataset.
We received genotypes for 13,372 unique samples distributed across 7 different genotype arrays. Quality control
was performed on these data to detect samples and variants that did not fit our standards for inclusion in
association testing. After harmonizing with modern reference data, the highest quality variants were used in a
battery of tests to assess the quality of each sample. Duplicate pairs, samples exhibiting excessive sharing of
identity by descent, samples whose genotypic sex did not match their clinical sex, and outliers detected among
several sample-by-variant statistics have been flagged for removal from further analysis. Additionally, genotypic
ancestry was inferred with respect to a modern reference panel, allowing for variant filtering and association
analyses to be performed within population as needed.With the exception of inferring each samples ancestry, QC
was performed on each array separately as much as possible, allowing for flexibility in the way the data can be

used in downstream analyses.



Data

2 Data

2.1 Samples

Initially, the array was checked for sample genotype missingness. Any samples with extreme genotype missingness
(> 0.5) were removed prior to our standard quality control procedures. There were no samples removed from
this data set.

The following diagram (Figure 1) describes the remaining sample distribution over the 7 genotype arrays,

along with their intersection sizes.
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Figure 1: Samples distributed by genotyping array

2.2 Variants

Table 1 gives an overview of the different variant classes and how they distributed across allele frequencies for
each dataset. Note that the totals reflect the sum of the chromosomes only. A legend has been provided below

the table for further inspection of the class definitions.
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2.2. Variants

Table 1: Summary of raw variants by frequency and classification

Freq = Minor allele frequency (MAF) range

Unpl = Chromosome = 0

Auto = Autosomal variants

X = X chromosome non-pseudoautosomal region (non-PAR) variants

Y = Y chromosome variants

X(PAR) = X chromosome pseudoautosomal (PAR) region variants

Mito = Mitochondrial variants

InDel = Insertion/Deletion variants (I/D or D/I alleles)

Multi = Multiallelic variants (2 or more alternate alleles)

Dup = Duplicated variants with respect to position and alleles

Freq Unpl Auto X Y X(PAR) Mito InDel Multi Dup Total
DCSP21M [0] 0 185 0 0 0 0 0 0 0 185
(0,0.01) 0 98408 0 O 0 0 0 0 0 98408
[0.01,0.03) 0 45066 0 O 0 0 0 0 0 45966
[0.03,0.05) 0 40475 0 O 0 0 0 0 0 40475
[0.05,0.10) 0 94202 0 O 0 0 0 0 0 94202
[0.10,0.50] 0 650162 0 O 0 0 0 0 0 650162
Total 0 920398 0 O 0 0 0 0 0 929398
DCSP2610K [0] 0 635 0 0 0 0 0 0 0 635
(0,0.01) 0 47853 0 O 0 0 0 0 0 47853
[0.01,0.03) 0 24003 0 O 0 0 0 0 0 24003
[0.03,0.05) 0 21478 0 O 0 0 0 0 0 21478
[0.05,0.10) 0 53134 0 O 0 0 0 0 0 53134
[0.10,0.50] 0 388095 0 O 0 0 0 0 0 388095
Total 0 535198 0 O 0 0 0 0 0 535198
LBCHS [0] 0 61152 0 O 0 0 0 0 0 61152
(0,0.01) 0 47859 0 O 0 0 0 0 0 47859
[0.01,0.03) 0 26970 0 O 0 0 0 0 0 26970
[0.03,0.05) 0 25607 0 O 0 0 0 0 0 25607
[0.05,0.10) 0 65020 0 O 0 0 0 0 0 65020
[0.10,0.50] 0 457283 0 O 0 0 0 0 0 457283
Total 0 683891 0 O 0 0 0 0 0 683891
LBMAS [0] 0 34812 0 O 0 0 0 0 0 34812
(0,0.01) 0 45826 0 O 0 0 0 0 0 45826
[0.01,0.03) 0 36276 0 O 0 0 0 0 0 36276
[0.03,0.05) 0 27960 0 O 0 0 0 0 0 27960
[0.05,0.10) 0 66835 0 O 0 0 0 0 0 66835
[0.10,0.50] 0 472182 0 O 0 0 0 0 0 472182
Total 0 683891 0 O 0 0 0 0 0 683891

Continued on next page ...
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Table 1: ... Continued from previous page

Freq Unpl Auto X Y X(PAR) Mito InDel Multi Dup Total

SCES 0 o 0 0 0 0 0 0 0 0 o0
(0,0.01) 0 46169 0 O 0 0 0 0] 0 46169
[0.01,0.03) 0 24007 0 O 0 0] 0 0 0 24007
[0.03,0.05) 0 21321 0 O 0 0 0 0 0 21321
[0.05,0.10) 0 53009 0 O 0 0 0 0 0 53009
[0.10,0.50] 0 387610 O O 0 0 0 0 0 387610
Total 0 532116 0 O 0 0 0 0 0 532116

SIMES O o 0 0 0 0 0 0 0 0 0
(0,0.01) 0 42083 0 0 0 0 0 0 0 42083
[0.01,0.03) 0 31084 0 O 0 0 0 0 0 31084
[0.03,0.05) 0 24108 0 0O 0 0 0 0 0 24108
[0.05,0.10) 0 55407 0 O 0 0 0 0 0 55407
[0.10,0.50] 0 397265 0 O 0 0 0 0 0 397265
Total 0 549947 0 O 0 0 0 0 0 549947

SINDI [0] 0 0 0 O 0 0 0 0 0 0
(0,0.01) 0 17615 0 O 0 0 0 0] 0 17615
[0.01,0.03) 0 20503 0 O 0 0 0 0 0 20503
[0.03,0.05) 0 20826 0 O 0 0 0 0 0 20826
[0.05,0.10) 0 57568 0 O 0 0 0 0 0 57568
[0.10,0.50] 0 435766 0 O 0 0 0 0 0 435766
Total 0 552278 0 O 0 0 0 0 0 552278

To facilitate downstream operations on genotype data, such as merging and meta-analysis, each dataset
gets harmonized with modern reference data. The harmonization process is performed in two steps. First,
using Genotype Harmonizer [2], the variants are strand-aligned with the 1000 Genomes Phase 3 Version 5 [4]
variants. While some variants (A/C or G/T variants) may be removed due to strand ambiguity, if enough
information exists, Genotype Harmonizer uses linkage disequilibrium (LD) patterns with nearby variants to
accurately determine strand. This step will remove variants that it is unable to reconcile and maintains variants
that are unique to the input data. The second step manually reconciles non-1000 Genomes variants with the
human reference assembly GRCh37 [7]. This step will flag variants for removal that do not match an allele
to the reference and variants that have only a single allele in the data file (O for the other). Note that some
monomorphic variants may be maintained in this process if there are two alleles in the data file and one of them
matches a reference allele.

After harmonization, the data is loaded into a Hail [9] matrix table for downstream use. See Figure 2 for

final variant counts by genotyping array.
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Figure 2: Variants remaining for analysis
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3 Sample QC

3.1 Ancestry Inference

Prior to association testing, it is useful to infer ancestry in relation to a modern reference panel representing the
major human populations. While our particular sample QC process does not directly depend on this information,
it is useful to downstream analysis when stratifying the calculation of certain variant statistics that are sensitive
to population substructure (eg. Hardy Weinberg equilibrium). Additionally, ancestry inference may identify
samples that do not seem to fit into a well-defined major population group, which would allow them to be
flagged for removal from association testing.

Initially, each array was merged with reference data. In this case, the reference used was the entire set
of 2,504 1000 Genomes Phase 3 Version 5 [4] samples and our method restricted this merging to a set of
5,166 known ancestry informative SNPs. The merged data consisted of 5,432 DCSP21M, 2,745 DCSP2610K,
4,522 LBCHS, 4,521 LBMAS, 2,737 SCES, 2,736 SIMES and 2,743 SINDI variants. After merging, principal
components (PCs) were computed using the PC-AiR [3] method in the GENESIS R package. This particular
algorithm allows for the calculation of PCs that reflect ancestry in the presence of known or cryptic relatedness.
The 1000 Genomes samples were forced into the 'unrelated’ set and the PC-AiR algorithm was used to find the
'unrelated’ samples from the array data. Then PCs were calculated on them and projected onto the remaining
samples.

Figures 3, 4, 5, 6, 7, 8, and 9 display plots of the top three principal components along with the 1000

Genomes major population groups.
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3.1. Ancestry Inference
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Figure 4: Principal components of ancestry for DCSP2610K
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Figure 6: Principal components of ancestry for LBMAS
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Figure 8: Principal components of ancestry for SIMES
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Figure 9: Principal components of ancestry for SINDI

Using the principal components of ancestry as features, we employed the signal processing software Klustakwik
[5] to model the array as a mixture of Gaussians, identifying clusters, or population groups/subgroups. In order
to generate clusters of sufficient size for statistical association tests, we used the first 3 principal components
as features in the clustering algorithm. This number of PC's distinctly separates the five major 1000 Genomes
population groups: AFR, AMR, EUR, EAS, and SAS. Figures 10, 11, 12, 13, 14, 15, and 16 clearly indicate
the population structure in the datasets. In Klustakwik output, cluster 1 is always reserved for outliers, or

samples that did not fit into any of the clusters found by the program. Upon further inspection, no samples were

manually reinstated during this step.
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Figure 11: Population clusters for DCSP2610K
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Figure 13: Population clusters for LBMAS
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Figure 15: Population clusters for SIMES

15



Sample QC 3.1. Ancestry Inference

« AFR « AFR
A AMR A AMR
= EAS = EAS
+ EUR + EUR
® NUS ® NUS
* SAS * SAS
0.025 CLUSTER 0.02 CLUSTER
. ! . 1
. 2 . 2
. 3 . 3
N ™
o o
g B : K
0.00
. s . 5
0.000
. 6 . 6
. ’ . 7
. 8 . 8
. 9 -0.02 . 9
N - N -
-0.025 . 1 . 1
0.00 0.02 0.04 . 12 -0.025 0.000 0.025 . 12
PC1 pC2
(a) PC1 vs. PC2 (b) PC2 vs. PC3

Figure 16: Population clusters for SINDI

The resulting clusters are then combined with the nearest 1000 Genomes cohort. Table 2 describes the
classification using this method. A final population assignment is determined by setting a hierarchy on the
genotyping technologies (DCSP21M > DCSP2610K > LBCHS > LBMAS > SCES > SIMES > SINDI) and

assigning each sample to the population determined using the highest technology.
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Sample QC 3.2. Duplicates and Excessive Sharing of Identity-by-Descent (IBD)

Table 2: Inferred ancestry by dataset and cluster

Population  Clusters Samples

DCSP21M EAS 8 1864
Outliers 1 0

DCSP2610K EAS 8 2087
Outliers 1 0

LBCHS EAS 9 1263
Outliers 1 0

LBMAS EAS 45,11 1185
SAS 9 3
Outliers 1 1

SCES EAS 8 1889
Outliers 1 0

SIMES EAS 3,7,9 2542
Outliers 1 0

SINDI SAS 4,911,12 2537
Outliers 1 1

Table 3: Final inferred ancestry

Population Samples

EAS 10830
SAS 2540
Outliers 2

3.2 Duplicates and Excessive Sharing of Identity-by-Descent (IBD)

Sample pair kinship coefficients were determined using KING [8] relationship inference software, which offers a
robust algorithm for relationship inference under population stratification. Prior to inferring relationships, we
used Plink [1] to filter out non-autosomal, non-A/C/G/T, low callrate, and low minor allele frequency variants.

Also, variants with positions in known high LD regions [6] and known Type 2 diabetes associated loci were

17



Sample QC 3.3. Sex Chromosome Check

removed and an LD-pruned dataset was created. The specific filters that were used are listed below.

e ——chr 1-22

--snps-only just-acgt

e —exclude range ...
e ——maf 0.01
e —geno 0.02

e —indep-pairwise 1000kb 1 0.2

After filtering there were 109,041 DCSP21M, 92,888 DCSP2610K, 101,404 LBCHS, 114,464 LBMAS, 92,909
SCES, 104,141 SIMES and 118,917 SINDI variants remaining.

In order to identify duplicate pairs of samples, a filter was set to Kinship > 0.4. There were no sample pairs
identified as duplicate in the array data. Upon manual inspection, If the clinical data for any of the duplicate
pairs was nearly identical (same date of birth, etc.), then the sample with the higher call rate was reinstated. If
the clinical data did not match or a manual inspection was not performed, both samples were removed. In this
case, no samples have been reinstated.

In addition to identifying duplicate samples, any single individual that exhibited kinship values indicating
a 2nd degree relative or higher relationship with 10 or more others was flagged for removal. The relationship
count indicated no samples that exhibited high levels of sharing identity by descent. Upon further inspection, no

samples were manually reinstated during this step.

3.3 Sex Chromosome Check

Each array was checked for genotype / clinical data agreement for sex. There were no samples that were flagged
as a 'PROBLEM'’ by Hail because it was unable to impute sex and there were no samples that were flagged for
removal because the genotype based sex did not match their clinical sex. Upon further inspection, no samples

were manually reinstated during this step.

3.4 Sample Outlier Detection

Each sample was evaluated for inclusion in association tests based on 10 sample-by-variant metrics (Table 4),
calculated using Hail [9]. Note that for the metrics n_called and call_rate, only samples below the mean are
filtered.

18



Sample QC 3.4. Sample Outlier Detection

Table 4: Sample Metrics

n_non_ref n_het + n_hom_var
n_het Number of heterozygous variants
n_called n_hom_ref + n_het + n_hom_var
call_rate Fraction of variants with called genotypes
r_ti_tv Transition/transversion ratio
het Inbreeding coefficient
het__high Inbreeding coefficient for variants with M AF >= 0.03
het_low Inbreeding coefficient for variants with M AF < 0.03
n_hom_var Number of homozygous alternate variants

r_het_hom_var het/hom_var ratio across all variants

3.4.1 Principal Component Adjustment and Normalization of Sample Metrics

Due to possible population substructure, the sample metrics exhibit some multi-modality in their distributions.
To evaluate more normally distributed data, we calculated principal component adjusted residuals of the metrics
using the top 10 principal components (PCARM's). Figure 17 shows the n_non_ref metric for DCSP21M

samples before and after adjustment.

Figure 17: Comparison of n_non_ref distributions before and after adjustment / normalization
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3.4.2 Individual Sample Metric Clustering

For outlier detection, we clustered the samples into Gaussian distributed subsets with respect to each PCARM

using the software Klustakwik [5]. During this process, samples that did not fit into any Gaussian distributed set

19



Sample QC 3.4. Sample Outlier Detection

of samples were identified and flagged for removal.

3.4.3 Principal Components of Variation in PCARM'’s

In addition to outliers along individual sample metrics, there may be samples that exhibit deviation from the
norm across multiple metrics. In order to identify these samples, we calculated principal components explaining
95% of the variation in 8 of the 10 PCARMs combined. The adjusted residuals for metrics 'call_rate’ and
'n_called’ are characterized by long tails that lead to the maximum value, which is not consistent with the other
metrics. In order to avoid excessive flagging of samples with lower, yet still completely acceptable, call rates,

these metrics were left out of principal component calculation.

3.4.4 Combined PCARM Clustering

All samples were clustered into Gaussian distributed subsets along the principal components of the PCARM's,
again using Klustakwik [5]. This effectively removed any samples that were far enough outside the distribution

on more than one PCARM, but not necessarily flagged as an outlier on any of the individual metrics alone.

3.4.5 Plots of Sample Outliers

The distributions for each PCARM and any outliers (cluster = 1) found are shown in Figures 18, 19, 20, 21, 22,
23, and 24. Samples are labeled according to Table 5.

Table 5: Sample Legend for Qutlier Plots

Grey Clustered into Gaussian distributed subsets (not Flagged)
Orange Flagged as outlier based on individual PCARM's
Blue Flagged as outlier based on PC's of PCARM'’s

Green Flagged as outlier for both methods

20
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3.4. Sample Outlier Detection
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Figure 18: Adjusted sample metric distributions for DCSP21M
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3.4. Sample Outlier Detection
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Figure 19: Adjusted sample metric distributions for DCSP2610K
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Figure 20: Adjusted sample metric distributions for LBCHS
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Figure 21: Adjusted sample metric distributions for LBMAS
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Figure 22: Adjusted sample metric distributions for SCES
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Figure 23: Adjusted sample metric distributions for SIMES
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Figure 24: Adjusted sample metric distributions for SINDI
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3.5 Summary of Sample Outlier Detection

Table 6 contains a summary of outliers detected by each method and across all genotyping technologies.
Note that 'PCA(Metrics)’ results from the clustering of the PCs of the 8 PCARM's combined, so 'Metrics +
PCA(Metrics)’ is the union of samples flagged by that method with samples flagged by each of the 10 individual
metric clusterings. Figure 25 summarizes the samples remaining for analysis. Upon further inspection, no samples

were manually reinstated during this step.

Table 6: Samples flagged for removal

DCSP21M DCSP2610K LBCHS LBMAS SCES SIMES SINDI Total

call_rate 21 17 12 12 26 41 30 159
het_high 29 33 12 22 26 30 49 201
het_low 34 16 18 23 21 30 18 160
het 29 33 13 28 28 30 39 200
n_called 21 17 13 12 20 42 30 155
n_het 23 15 12 28 21 30 30 159
n_hom_var 27 15 12 14 20 31 18 137
n_non_ref 25 17 12 22 37 31 18 162
r_het_hom_var 28 15 13 21 25 30 21 153
r_ti_tv 21 15 15 11 24 35 18 139
PCA(Metrics) 20 15 12 11 19 30 18 125
Metrics+PCA(Metrics) 44 36 22 40 42 a7 60 291
Extreme Missingness 0 0 0 0 0 0 0 0
Duplicates 0 0 0 0 0 0 0 0
Cryptic Relatedness 0 0 0 0 0 0 0 0
Sexcheck 0 0 0 0 0 0 0 0
Ancestry Outlier 0 0 0 0 0 0 0 0
Total 46 38 24 42 44 49 62 293
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Figure 25: Samples remaining for analysis
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Variant QC

4 Variant QC

Variant quality was assessed using call rate and Hardy Weinberg equilibrium (HWE). We calculate HWE using
controls only within any of 4 major ancestral populations; EUR, AFR, SAS and EAS. There must have been at
least 100 samples in a population to trigger a filter. This conservative approach minimizes the influence from
admixture in other population groups. This procedure resulted in flagging 4,349 DCSP21M, 1,169 DCSP2610K,
3,611 LBCHS, 3,312 LBMAS, 2,220 SCES, 2,093 SIMES and 2,467 SINDI variants for removal. Figure 26 shows

the number of variants remaining for analysis after applying filters.
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Figure 26: Variants remaining for analysis
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